Influence of Core Suture Material and Peripheral Repair Technique on the Strength of Kessler Flexor Tendon Repair

2003 ◽  
Vol 28 (4) ◽  
pp. 357-362 ◽  
Author(s):  
V. MISHRA ◽  
J. H. KUIPER ◽  
C. P. KELLY

The purpose of our study was to determine the most favourable combination of core suture material and peripheral repair technique for Kessler tendon repair. Thirty freshly thawed pig flexor tendons were repaired by a Kessler technique, either with braided polyester or monofilament nylon suture. A peripheral augmentation was done using one of the three techniques – running, cross-stitch and Halsted. All repairs were tested by cyclic loading, followed by load-to-failure. During cyclic loading six of the 15 tendons with a nylon core failed, but none with a braided polyester core. Irrespective of peripheral technique, the monofilament nylon core suture allowed early central cyclic gapping, resulting in failure of the repair. During load-to-failure testing, the running stitch proved weakest and the cross-stitch repair toughest.

HAND ◽  
1978 ◽  
Vol os-10 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Hilton Becker

summary A new approach to the problem of flexor tendon repair within the fibro-osseous canal is presented. Using a technique of bevelling the tendon ends and suturing with a fine suture material, under magnification, a sufficiently strong junction is obtained, which enables immediate active mobilisation without strangulation of the blood supply. The junction can resist gap formation up to tensions of 4 Kg. It is postulated that under these conditions tendon nutrition is minimally interfered with, adhesions do not form, and the tendon heals by its own intrinsic healing ability.


2009 ◽  
Vol 35 (1) ◽  
pp. 46-50 ◽  
Author(s):  
N. Takeuchi ◽  
H. Mitsuyasu ◽  
S. Hotokezaka ◽  
H. Miura ◽  
H. Higaki ◽  
...  

The fatigue strength of three peripheral suture techniques for flexor tendon repair was compared by cyclic loading of repairs in a cotton dental roll tendon model. Thirty pairs of dental roll were sutured using only peripheral sutures with 6-0 polypropylene. An initial cyclic load of 5 N for 500 cycles was applied and increased by 5 N for an additional 500 cycles at each new load until rupture. The fatigue strength of an interlocking cross-stitch suture was 113% greater than a running suture and 36% greater than a standard cross-stitch suture. Interlocking the cross-stitch prevented shortening of the transverse portions under load and appears to be a useful technique for increasing the strength of the peripheral suture.


2019 ◽  
Vol 24 (03) ◽  
pp. 297-302
Author(s):  
Jasmin Shimin Lee ◽  
Yoke-Rung Wong ◽  
Shian-Chao Tay

Background: This study investigates the biomechanical performance of the Asymmetric flexor tendon repair technique using barbed suture. The Asymmetric repair technique using monofilament nylon suture was previously reported to have a higher tensile strength than the modified Lim-Tsai repair technique, but its repair stiffness and load to gap force were significantly lower. There is hence an unmet need to improve this technique and the substitution of nylon suture with barbed sutures may be the solution. Methods: Two groups consisting of 10 porcine tendons each were repaired with the six-strand Asymmetric repair technique using V-Loc® 3-0 and Supramid® 4-0 respectively. The repairs were subjected to a mechanical tester for static testing. The ultimate tensile strength, load to 2 mm gap force, repair stiffness, time taken to complete a repair and failure mechanism of the repairs were recorded and analyzed. Results: All the repairs using V-Loc® 3-0 sutures had significantly higher median values of ultimate tensile strength (64.1 N; 56.9 N), load to 2 mm gap force (39.2 N; 19.7 N), repair stiffness (6.4 N/mm; 4.7 N/mm) and time taken to complete a repair (9.4 mins; 7.7 mins). All the repairs using V-Loc® sutures failed by suture breakage while 80% of repairs using Supramid® sutures failed by suture pullout. Conclusions: The use of the barbed sutures in the Asymmetric repair technique, whilst more time consuming, has shown promising improvement to its biomechanical performance (i.e. better ultimate tensile strength, stiffness and resistance to gap formation).


Hand ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 50-55
Author(s):  
Yoke Rung Wong ◽  
Shian Chao Tay

Background: This study evaluated the biomechanical performance of a novel asymmetric 6-strand flexor tendon repair technique without locking loops. Methods: Twenty porcine flexor tendons were equally repaired by using the asymmetric technique and compared with the modified Lim-Tsai repair technique. The ultimate tensile strength, load to 1-mm gap force, stiffness, and mechanism of failure were measured. Results: The asymmetric repair technique had significantly higher tensile strength (63.3 ± 3.7 N) than the modified Lim-Tsai repairs (46.7 ± 8.3 N). Conclusions: A novel flexor tendon repair technique with improved biomechanical performance may be available for use in flexor tendon repairs.


2006 ◽  
Vol 39 (01) ◽  
pp. 94-102
Author(s):  
G. Balakrishnan

ABSTRACTStronger flexor tendon repairs facilitate early active motion therapy protocols. Core sutures using looped suture material provide 1 ½ to twice the strength of Kessler′s technique (with four strand and six strand Tsuge technique respectively). The technique is well-described and uses preformed looped sutures (supramid). This is not available in many countries and we describe a technique whereby looped sutures can be introduced in flexor tendon repair by the use of 23 G hypodermic needle and conventional 4.0 or 5.0 sutures. This is an alternative when the custom made preformed sutures are not available. This can be practiced in zone 3 to zone 5 repairs. Technical difficulties limit its use in zone 2 repairs.


1992 ◽  
Vol 17 (5) ◽  
pp. 550-552 ◽  
Author(s):  
D. BHATIA ◽  
K. E. TANNER ◽  
W. BONFIELD ◽  
N. D. CITRON

The effects of different thicknesses and configurations of core sutures were studied in human cadaveric flexor tendon repairs. Both straight and cyclic load tests were employed. To exploit the full strength of 4/0 suture material, the Kessler repair using four locked single knots would seem to be appropriate.


2019 ◽  
Vol 139 (3) ◽  
pp. 429-434
Author(s):  
Elias Polykandriotis ◽  
Foued Besrour ◽  
Andreas Arkudas ◽  
Florian Ruppe ◽  
Katharina Zetzmann ◽  
...  

Hand Surgery ◽  
1996 ◽  
Vol 01 (02) ◽  
pp. 141-146
Author(s):  
Ivan Matev

The author’s 30 years experience with long grafting procedure is presented and the essentials of the technique are outlined. When both flexor tendons are cut in Zone 2, secondary repair using long graft gives the possibility of better results than the conventional tendon grafting, when scarring exists in the palm.


2016 ◽  
Vol 04 (01) ◽  
pp. 16-20 ◽  
Author(s):  
Philip Zeplin ◽  
M. Henle ◽  
R. Zahn ◽  
R. Meffert ◽  
K. Schmidt

2012 ◽  
Vol 37 (2) ◽  
pp. 101-108 ◽  
Author(s):  
T. H. Low ◽  
T. S. Ahmad ◽  
E. S. Ng

We have compared a simple four-strand flexor tendon repair, the single cross-stitch locked repair using a double-stranded suture (dsSCL) against two other four-strand repairs: the Pennington modified Kessler with double-stranded suture (dsPMK); and the cruciate cross-stitch locked repair with single-stranded suture (Modified Sandow). Thirty fresh frozen cadaveric flexor digitorum profundus tendons were transected and repaired with one of the core repair techniques using identical suture material and reinforced with identical peripheral sutures. Bulking at the repair site and tendon–suture junctions was measured. The tendons were subjected to linear load-to-failure testing. Results showed no significant difference in ultimate tensile strength between the Modified Sandow (36.8 N) and dsSCL (32.6 N) whereas the dsPMK was significantly weaker (26.8 N). There were no significant differences in 2 mm gap force, stiffness or bulk between the three repairs. We concluded that the simpler dsSCL repair is comparable to the modified Sandow repair in tensile strength, stiffness and bulking.


Sign in / Sign up

Export Citation Format

Share Document