A rainfall-runoff probabilistic simulation program: 1. Synthetic data generation

1996 ◽  
Vol 11 (4) ◽  
pp. 235-242 ◽  
Author(s):  
T.V. Hromadka
2021 ◽  
Vol 18 (6) ◽  
pp. 8603-8621
Author(s):  
Grigoriy Gogoshin ◽  
◽  
Sergio Branciamore ◽  
Andrei S. Rodin

<abstract><p>Bayesian Network (BN) modeling is a prominent and increasingly popular computational systems biology method. It aims to construct network graphs from the large heterogeneous biological datasets that reflect the underlying biological relationships. Currently, a variety of strategies exist for evaluating BN methodology performance, ranging from utilizing artificial benchmark datasets and models, to specialized biological benchmark datasets, to simulation studies that generate synthetic data from predefined network models. The last is arguably the most comprehensive approach; however, existing implementations often rely on explicit and implicit assumptions that may be unrealistic in a typical biological data analysis scenario, or are poorly equipped for automated arbitrary model generation. In this study, we develop a purely probabilistic simulation framework that addresses the demands of statistically sound simulations studies in an unbiased fashion. Additionally, we expand on our current understanding of the theoretical notions of causality and dependence / conditional independence in BNs and the Markov Blankets within.</p></abstract>


2007 ◽  
Author(s):  
Marek K. Jakubowski ◽  
David Pogorzala ◽  
Timothy J. Hattenberger ◽  
Scott D. Brown ◽  
John R. Schott

2004 ◽  
pp. 211-234 ◽  
Author(s):  
Lewis Girod ◽  
Ramesh Govindan ◽  
Deepak Ganesan ◽  
Deborah Estrin ◽  
Yan Yu

2021 ◽  
Author(s):  
Maria Lyssenko ◽  
Christoph Gladisch ◽  
Christian Heinzemann ◽  
Matthias Woehrle ◽  
Rudolph Triebel

Author(s):  
Daniel Jeske ◽  
Pengyue Lin ◽  
Carlos Rendon ◽  
Rui Xiao ◽  
Behrokh Samadi

Sign in / Sign up

Export Citation Format

Share Document