computational systems biology
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 68)

H-INDEX

23
(FIVE YEARS 3)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Simone G. Riva ◽  
Paolo Cazzaniga ◽  
Marco S. Nobile ◽  
Simone Spolaor ◽  
Leonardo Rundo ◽  
...  

Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of computational systems biology can be limited by the lack of a standardized benchmarking approach. To overcome these limitations, we propose here a novel tool, named SMGen, designed to automatically generate synthetic models of reaction networks that, by construction, are characterized by relevant features (e.g., system connectivity and reaction discreteness) and non-trivial emergent dynamics of real biochemical networks. The generation of synthetic models in SMGen is based on the definition of an undirected graph consisting of a single connected component that, generally, results in a computationally demanding task; to speed up the overall process, SMGen exploits a main–worker paradigm. SMGen is also provided with a user-friendly graphical user interface, which allows the user to easily set up all the parameters required to generate a set of synthetic models with any number of reactions and species. We analysed the computational performance of SMGen by generating batches of symmetric and asymmetric reaction-based models (RBMs) of increasing size, showing how a different number of reactions and/or species affects the generation time. Our results show that when the number of reactions is higher than the number of species, SMGen has to identify and correct a large number of errors during the creation process of the RBMs, a circumstance that increases the running time. Still, SMGen can generate synthetic models with hundreds of species and reactions in less than 7 s.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Aleš Prokop

These days many leading scientists argue for a new paradigm for cancer research and propose a complex systems-view of cancer supported by empirical evidence. As an example, Thea Newman (2021) has applied “the lessons learned from physical systems to a critique of reductionism in medical research, with an emphasis on cancer”. It is the understanding of this author that the mesoscale constructs that combine the bottom-up as well as top-down approaches, are very close to the concept of emergence. The mesoscale constructs can be said to be those effective components through which the system allows itself to be understood. A short list of basic concepts related to life/biology fundamentals are first introduced to demonstrate a lack of emphasis on these matters in literature. It is imperative that physical and chemical approaches are introduced and incorporated in biology to make it more conceptually sound, quantitative, and based on the first principles. Non-equilibrium thermodynamics is the only tool currently available for making progress in this direction. A brief outline of systems biology, the discovery of emergent properties, and metabolic modeling are introduced in the second part. Then, different cancer initiation concepts are reviewed, followed by application of non-equilibrium thermodynamics in the metabolic and genomic analysis of initiation and development of cancer, stressing the endogenous network hypothesis (ENH). Finally, extension of the ENH is suggested to include a cancer niche (exogenous network hypothesis). It is expected that this will lead to a unifying systems–biology approach for a future combination of the analytical and synthetic arms of two major hypotheses of cancer models (SMT and TOFT).


2021 ◽  
Author(s):  
Rongting Yue ◽  
Abhishek Dutta

Abstract Stroke is one of the leading causes of death in humans. Even if patients survive from stroke, they may suffer sequelae such as disability. Treatment for strokes remains unsatisfactory due to an incomplete understanding of its mechanisms. This study investigates Ischemic Stroke (IS), a primary subtype of stroke, through analyses based on microarray data. Limma (in R)derives differentially expressed genes, and the protein-protein interaction (PPI) network is mapped from the database. Gene co-expression patterns are obtained for clustering gene modules by the Weighted Correlation Network Analysis (WGCNA), and genes with high connectivity in the significantly co-expressed modules are selected as key regulators. Common hubs are identified as Cdkn1a, Nes and Anxa2. Based on our analyses, we hypothesize that these hubs might play a key role in the onset and progression of IS. Result suggests the potential of identifying unexplored key regulators by the systemic method used in this work. Further analyses aim at expanding candidate genes for screening biomarkers for IS, and experimental validation is required on identified potential hubs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Feierabend ◽  
Alina Renz ◽  
Elisabeth Zelle ◽  
Katharina Nöh ◽  
Wolfgang Wiechert ◽  
...  

Corynebacterium glutamicum belongs to the microbes of enormous biotechnological relevance. In particular, its strain ATCC 13032 is a widely used producer of L-amino acids at an industrial scale. Its apparent robustness also turns it into a favorable platform host for a wide range of further compounds, mainly because of emerging bio-based economies. A deep understanding of the biochemical processes in C. glutamicum is essential for a sustainable enhancement of the microbe's productivity. Computational systems biology has the potential to provide a valuable basis for driving metabolic engineering and biotechnological advances, such as increased yields of healthy producer strains based on genome-scale metabolic models (GEMs). Advanced reconstruction pipelines are now available that facilitate the reconstruction of GEMs and support their manual curation. This article presents iCGB21FR, an updated and unified GEM of C. glutamicum ATCC 13032 with high quality regarding comprehensiveness and data standards, built with the latest modeling techniques and advanced reconstruction pipelines. It comprises 1042 metabolites, 1539 reactions, and 805 genes with detailed annotations and database cross-references. The model validation took place using different media and resulted in realistic growth rate predictions under aerobic and anaerobic conditions. The new GEM produces all canonical amino acids, and its phenotypic predictions are consistent with laboratory data. The in silico model proved fruitful in adding knowledge to the metabolism of C. glutamicum: iCGB21FR still produces L-glutamate with the knock-out of the enzyme pyruvate carboxylase, despite the common belief to be relevant for the amino acid's production. We conclude that integrating high standards into the reconstruction of GEMs facilitates replicating validated knowledge, closing knowledge gaps, and making it a useful basis for metabolic engineering. The model is freely available from BioModels Database under identifier MODEL2102050001.


2021 ◽  
Author(s):  
Rongting Yue ◽  
Abhishek Dutta

Stroke is one of the leading causes of death in humans. Even if patients survive from stroke, they may suffer sequelae such as disability. Treatment for strokes remains unsatisfactory due to an incomplete understanding of its mechanisms. This study investigates Ischemic Stroke (IS), a primary subtype of stroke, through analyses based on microarray data. Limma (in R)derives differentially expressed genes, and the protein-protein interaction (PPI) network is mapped from the database. Gene co-expression patterns are obtained for clustering gene modules by the Weighted Correlation Network Analysis (WGCNA), and genes with high connectivity in the significantly co-expressed modules are selected as key regulators. Common hubs are identified as Cdkn1a, Nes and Anxa2. Based on our analyses, we hypothesize that these hubs might play a key role in the onset and progression of IS. Result suggests the potential of identifying unexplored key regulators by the systemic method used in this work. Further analyses aim at expanding candidate genes for screening biomarkers for IS, and experimental validation is required on identified potential hubs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kosmas Kosmidis ◽  
Marc-Thorsten Hütt

AbstractToxin–antitoxin (TA) modules are part of most bacteria’s regulatory machinery for stress responses and general aspects of their physiology. Due to the interplay of a long-lived toxin with a short-lived antitoxin, TA modules have also become systems of interest for mathematical modelling. Here we resort to previous modelling efforts and extract from these a minimal model of type II TA system dynamics on a timescale of hours, which can be used to describe time courses derived from gene expression data of TA pairs. We show that this model provides a good quantitative description of TA dynamics for the 11 TA pairs under investigation here, while simpler models do not. Our study brings together aspects of Biophysics with its focus on mathematical modelling and Computational Systems Biology with its focus on the quantitative interpretation of ’omics’ data. This mechanistic model serves as a generic transformation of time course information into kinetic parameters. The resulting parameter vector can, in turn, be mechanistically interpreted. We expect that TA pairs with similar mechanisms are characterized by similar vectors of kinetic parameters, allowing us to hypothesize on the mode of action for TA pairs still under discussion.


2021 ◽  
Author(s):  
Alexander Lyulph Robert Lubbock ◽  
Carlos F Lopez

Motivation: Computational systems biology analyses typically make use of multiple software and their dependencies, which often run across heterogeneous compute environments. This can introduce differences in performance and reproducibility. Capturing metadata (e.g. package versions, GPU model) currently requires repetitious code and is difficult to store centrally for analysis. Even where virtual environments and containers are used, updates over time mean that versioning metadata should still be captured within analysis pipelines to guarantee reproducibility. Results: Microbench is a simple and extensible Python package to automate metadata capture to a file or Redis database. Captured metadata can include execution time, software package versions, environment variables, hardware information, Python version, and more, with plugins. We present three case studies demonstrating Microbench usage to benchmark code execution and examine environment metadata for reproducibility purposes. Availability: Install from the Python Package Index using pip install microbench. Source code is available from https://github.com/alubbock/microbench.


Sign in / Sign up

Export Citation Format

Share Document