A Synthetic Data Generation Model for Diabetic Foot Treatment

Author(s):  
Jayun Hyun ◽  
Seo Hu Lee ◽  
Ha Min Son ◽  
Ji-Ung Park ◽  
Tai-Myoung Chung
2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Jayun Hyun ◽  
Yongho Lee ◽  
Ha Min Son ◽  
Seo Hu Lee ◽  
Vinh Pham ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2007 ◽  
Author(s):  
Marek K. Jakubowski ◽  
David Pogorzala ◽  
Timothy J. Hattenberger ◽  
Scott D. Brown ◽  
John R. Schott

2004 ◽  
pp. 211-234 ◽  
Author(s):  
Lewis Girod ◽  
Ramesh Govindan ◽  
Deepak Ganesan ◽  
Deborah Estrin ◽  
Yan Yu

2021 ◽  
Author(s):  
Maria Lyssenko ◽  
Christoph Gladisch ◽  
Christian Heinzemann ◽  
Matthias Woehrle ◽  
Rudolph Triebel

Author(s):  
Daniel Jeske ◽  
Pengyue Lin ◽  
Carlos Rendon ◽  
Rui Xiao ◽  
Behrokh Samadi

2019 ◽  
Vol 30 (3) ◽  
pp. 627-648 ◽  
Author(s):  
Evelyn Buckwar ◽  
Massimiliano Tamborrino ◽  
Irene Tubikanec

Abstract Approximate Bayesian computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time-dependent, real-world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise: First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g. the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography data. The derived summaries are particularly robust to the model simulation, and this fact, combined with the proposed reliable numerical scheme, yields accurate ABC inference. In contrast, the inference returned using standard numerical methods (Euler–Maruyama discretisation) fails. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.


Sign in / Sign up

Export Citation Format

Share Document