Stage-dependent role of growth differentiation factor-9 in ovarian follicle development

2001 ◽  
Vol 183 (1-2) ◽  
pp. 171-177 ◽  
Author(s):  
Ursula A Vitt ◽  
Aaron J.W Hsueh
2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 289-290
Author(s):  
Ghanim Almahbobi ◽  
Chantelle Ruoss ◽  
Amanda Tadros ◽  
Tim O'Shea ◽  
Jim McFarlane

2007 ◽  
Vol 77 (Suppl_1) ◽  
pp. 171-171
Author(s):  
Ankur Nagaraja ◽  
Stephanie Pangas ◽  
Martin Matzuk

2018 ◽  
Author(s):  
Michele R. Plewes ◽  
Xiaoying Hou ◽  
Pan Zhang ◽  
Jennifer Wood ◽  
Andrea Cupp ◽  
...  

ABSTRACTYes-associated protein (YAP) is one of the major components of the Hippo signaling pathway, also known as the Salvador/Warts/Hippo (SWH) pathway. Although the exact extracellular signal that controls the Hippo pathway is currently unknown, increasing evidence supports a critical role of the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. The ovary is one of few adult tissues that exhibit cyclical changes. Ovarian follicles, the basic units of ovary, are composed of a single oocyte surrounded by expanding layers of granulosa and theca cells. Granulosa cells (GCs) produce sex steroids and growth factors, which facilitate the development of the follicle and maturation of the oocyte. It has been reported that YAP is highly expressed in human GC tumors, but the role of YAP in normal ovarian follicle development is largely unknown. In current study, we examined YAP expression in bovine ovaries. We demonstrate that downstream hippo signaling effector protein, YAP and transcription co-activator, TAZ, are present and localization of both YAP and TAZ are density-dependent. Likewise, YAP and TAZ are critically involved in granulosa cell proliferation. Furthermore, reducing YAP in granulosa cells inhibits FSH-induced aromatase expression and estradiol biosynthesis. The data suggest that YAP plays an important role in the development of ovarian follicles and estradiol synthesis, which are necessary for maintaining normal ovarian function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liyuan Li ◽  
Xiaojin Shi ◽  
Yun Shi ◽  
Zhao Wang

The follicle is the functional unit of the ovary, which is composed of three types of cells: oocytes, granulosa cells, and theca cells. Ovarian follicle development and the subsequent ovulation process are coordinated by highly complex interplay between endocrine, paracrine, and autocrine signals, which coordinate steroidogenesis and gametogenesis. Follicle development is regulated mainly by three organs, the hypothalamus, anterior pituitary, and gonad, which make up the hypothalamic-pituitary-gonadal axis. Steroid hormones and their receptors play pivotal roles in follicle development and participate in a series of classical signaling pathways. In this review, we summarize and compare the role of classical signaling pathways, such as the WNT, insulin, Notch, and Hedgehog pathways, in ovarian follicle development and the underlying regulatory mechanism. We have also found that these four signaling pathways all interact with FOXO3, a transcription factor that is widely known to be under control of the PI3K/AKT signaling pathway and has been implicated as a major signaling pathway in the regulation of dormancy and initial follicular activation in the ovary. Although some of these interactions with FOXO3 have not been verified in ovarian follicle cells, there is a high possibility that FOXO3 plays a core role in follicular development and is regulated by classical signaling pathways. In this review, we present these signaling pathways from a comprehensive perspective to obtain a better understanding of the follicular development process.


2021 ◽  
Author(s):  
Min Chen ◽  
Fangfang Dong ◽  
Min Chen ◽  
Zhiming Shen ◽  
Haowei Wu ◽  
...  

AbstractProtein arginine methyltransferase 5 (Prmt5) is the major type II enzyme responsible for symmetric dimethylation of arginine. Here, we found PRMT5 was expressed at high level in ovarian granulosa cells of growing follicles. Inactivation of Prmt5 in granulosa cells resulted in aberrant follicle development and female infertility. In Prmt5-knockout mice, follicle development was arrested with disorganized granulosa cells in which WT1 expression was dramatically reduced and the expression of steroidogenesis-related genes was significantly increased. The premature differentiated granulosa cells were detached from oocytes and follicle structure was disrupted. Mechanism studies revealed that Wt1 expression was regulated by PRMT5 at the protein level. PRMT5 facilitated IRES-dependent translation of Wt1 mRNA by methylating HnRNPA1. Moreover, the upregulation of steroidogenic genes in Prmt5-deficient granulosa cells was repressed by Wt1 overexpression. These results demonstrate PRMT5 participates in granulosa cell lineage maintenance by inducing Wt1 expression. Our study uncovers a new role of post-translational arginine methylation in granulosa cell differentiation and follicle development.


PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17348 ◽  
Author(s):  
Monica Antenos ◽  
Lei Lei ◽  
Min Xu ◽  
Anjali Malipatil ◽  
Sarah Kiesewetter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document