Nonlinear waves in a viscous horizontal film in the presence of an electric field

1997 ◽  
Vol 40-41 ◽  
pp. 55-60 ◽  
Author(s):  
A. González ◽  
A. Castellanos
2021 ◽  
Vol 250 ◽  
pp. 03012
Author(s):  
Vladimir I. Erofeev ◽  
Anna V. Leonteva ◽  
Alexey O. Malkhanov ◽  
Ashot V. Shekoyan

To describe a nonlinear ultrasonic wave in a semiconductor with charged dislocations, an evolution equation is obtained that generalizes the well-known equations of wave dynamics: Burgers and Korteweg de Vries. By the method of truncated decompositions, an exact analytical solution of the evolution equation with a kink profile has been found. The kind of kink (increasing, decreasing) and its polarity depend on the values of the parameters and their signs. An ultrasonic wave in a semiconductor containing numerous charged dislocations is considered. It is assumed that there is a constant electric field that creates an electric current. The situation is similar to the case of the propagation of ultrasonic waves in piezoelectric semiconductors, but in the problem under consideration, instead of the electric field due to the piezoelectric properties of the medium, the electric field of dislocations appears.


2004 ◽  
Vol 11 (2) ◽  
pp. 197-204 ◽  
Author(s):  
R. Pottelette ◽  
R. A. Treumann ◽  
E. Georgescu

Abstract. We report on the in situ identification of a narrow electrostatic acceleration layer (electrostatic shock) containing intense plasma turbulence in the upward current region, and its effect on auroral particles. Wave turbulence recorded in the center of the layer differs in character from that recorded above and beneath. It is concluded that the shock is sustained by different nonlinear waves which, at each level, act on the particles in such a way to produce a net upward directed electric field. The main power is in the ion acoustic range. We point out that anomalous resistivities are incapable of locally generating the observed parallel potential drop.


Sign in / Sign up

Export Citation Format

Share Document