Widely integrative properties of layer 5 pyramidal cells support a role for processing of extralaminar synaptic inputs in rat neocortex

2003 ◽  
Vol 343 (2) ◽  
pp. 121-124 ◽  
Author(s):  
Albert E. Telfeian ◽  
Barry W. Connors
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Edward D Cui ◽  
Ben W Strowbridge

Most neurons do not simply convert inputs into firing rates. Instead, moment-to-moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-à-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties.


1999 ◽  
Vol 81 (1) ◽  
pp. 404-407 ◽  
Author(s):  
R. Anthony Defazio ◽  
John J. Hablitz

DeFazio, R. Anthony and John J. Hablitz. Reduction of zolpidem sensitivity in a freeze lesion model of neocortical dysgenesis. J. Neurophysiol. 81: 404–407, 1999. Early postnatal freeze lesions in rat neocortex produce anatomic abnormalities resembling those observed in human patients with seizure disorders. Although in vitro brain slices containing the lesion are hyperexcitable, the mechanisms of this alteration have yet to be elucidated. To test the hypothesis that changes in postsynaptic inhibitory receptors may underlie this hyperexcitability, we examined properties of γ-aminobutyric acid type A receptor (GABAAR)–mediated miniature inhibitory postsynaptic currents (mIPSCs). Recordings were obtained in layer II/III pyramidal cells located 1–2 mm lateral to the lesion. mIPSC peak amplitude and rate of rise were increased relative to nonlesioned animals, whereas decay time constant and interevent interval were unaltered. Bath application of zolpidem at a concentration (20 nM) specific for activation of the type 1 benzodiazepine receptor had no significant effect on decay time constant in six of nine cells. Exposure to higher concentrations (100 nM) enhanced the decay time constant of all cells tested ( n = 7). Because mIPSCs from unlesioned animals were sensitive to both concentrations of zolpidem, these results suggest that freeze lesions may decrease the affinity of pyramidal cell GABAARs for zolpidem. This could be mediated via a change in α-subunit composition of the GABAAR, which eliminates the type 1 benzodiazepine receptor.


2016 ◽  
Vol 116 (2) ◽  
pp. 472-478 ◽  
Author(s):  
MacKenzie A. Howard ◽  
Scott C. Baraban

Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation.


1998 ◽  
Vol 79 (3) ◽  
pp. 1549-1566 ◽  
Author(s):  
Xiao-Jing Wang

Wang, Xiao-Jing. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79: 1549–1566, 1998. In this work, we present a quantitative theory of temporal spike-frequency adaptation in cortical pyramidal cells. Our model pyramidal neuron has two-compartments (a “soma” and a “dendrite”) with a voltage-gated Ca2+ conductance ( g Ca) and a Ca2+-dependent K+ conductance ( g AHP) located at the dendrite or at both compartments. Its frequency-current relations are comparable with data from cortical pyramidal cells, and the properties of spike-evoked intracellular [Ca2+] transients are matched with recent dendritic [Ca2+] imaging measurements. Spike-frequency adaptation in response to a current pulse is characterized by an adaptation time constant τadap and percentage adaptation of spike frequency F adap [% (peak − steady state)/peak]. We show how τadap and F adap can be derived in terms of the biophysical parameters of the neural membrane and [Ca2+] dynamics. Two simple, experimentally testable, relations between τadap and F adap are predicted. The dependence of τadap and F adap on current pulse intensity, electrotonic coupling between the two compartments, g AHP as well the [Ca2+] decay time constant τCa, is assessed quantitatively. In addition, we demonstrate that the intracellular [Ca2+] signal can encode the instantaneous neuronal firing rate and that the conductance-based model can be reduced to a simple calcium-model of neuronal activity that faithfully predicts the neuronal firing output even when the input varies relatively rapidly in time (tens to hundreds of milliseconds). Extensive simulations have been carried out for the model neuron with random excitatory synaptic inputs mimicked by a Poisson process. Our findings include 1) the instantaneous firing frequency (averaged over trials) shows strong adaptation similar to the case with current pulses; 2) when the g AHP is blocked, the dendritic g Ca could produce a hysteresis phenomenon where the neuron is driven to switch randomly between a quiescent state and a repetitive firing state. The firing pattern is very irregular with a large coefficient of variation of the interspike intervals (ISI CV > 1). The ISI distribution shows a long tail but is not bimodal. 3) By contrast, in an intrinsically bursting regime (with different parameter values), the model neuron displays a random temporal mixture of single action potentials and brief bursts of spikes. Its ISI distribution is often bimodal and its power spectrum has a peak. 4) The spike-adapting current I AHP, as delayed inhibition through intracellular Ca2+ accumulation, generates a “forward masking” effect, where a masking input dramatically reduces or completely suppresses the neuronal response to a subsequent test input. When two inputs are presented repetitively in time, this mechanism greatly enhances the ratio of the responses to the stronger and weaker inputs, fulfilling a cellular form of lateral inhibition in time. 5) The [Ca2+]-dependent I AHP provides a mechanism by which the neuron unceasingly adapts to the stochastic synaptic inputs, even in the stationary state following the input onset. This creates strong negative correlations between output ISIs in a frequency-dependent manner, while the Poisson input is totally uncorrelated in time. Possible functional implications of these results are discussed.


1998 ◽  
Vol 79 (3) ◽  
pp. 1579-1582 ◽  
Author(s):  
Thomas Mittmann ◽  
Christian Alzheimer

Mittmann, Thomas and Christian Alzheimer. Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. J. Neurophysiol. 79: 1579–1582, 1998. Muscarinic modulation of persistent Na+ current ( I NaP) was studied using whole cell recordings from acutely isolated pyramidal cells of rat neocortex. After suppression of Ca2+ and K+ currents, I NaP was evoked by slow depolarizing voltage ramps or by long depolarizing voltage steps. The cholinergic agonist, carbachol, produced an atropine-sensitive decrease of I NaP at all potentials. When applied at a saturating concentration (20 μM), carbachol reduced peak I NaP by 38% on average. Carbachol did not alter the voltage dependence of I NaP activation nor did it interfere with the slow inactivation of I NaP. Our data indicate that I NaP can be targeted by the rich cholinergic innervation of the neocortex. Because I NaP is activated in the subthreshold voltage range, cholinergic inhibition of this current would be particularly suited to modulate the electrical behavior of neocortical pyramidal cells below and near firing threshold.


2006 ◽  
Vol 17 (9) ◽  
pp. 2204-2213 ◽  
Author(s):  
J.-V. Le Be ◽  
G. Silberberg ◽  
Y. Wang ◽  
H. Markram

Sign in / Sign up

Export Citation Format

Share Document