Effect of Moisture Level on Nitrogen Immobilization as Affected by Wheat Straw Decomposition in Soil

Author(s):  
K.K. R. Bhardwaj ◽  
B. Novak
2010 ◽  
Vol 45 (3) ◽  
pp. 332-334
Author(s):  
Victor dos Reis Pinheiro ◽  
Claudine Dinali Santos Seixas ◽  
Cláudia Vieira Godoy ◽  
Rafael Moreira Soares ◽  
Maria Cristina Neves de Oliveira ◽  
...  

The objective of this work was to evaluate the effect of moisture and temperature on the development of Sclerotium rolfsii on soybean, corn, and wheat straw. Wheat straw produced the lowest number of sclerotia. Intermediate soil moisture level (70% of field capacity), and temperatures ranging between 25-30ºC favored sclerotia development. No sclerotia were formed at temperatures between 30-35ºC, on any type of straw.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


Author(s):  
Jin Liu ◽  
Yangquanwei Zhong ◽  
Xiaoyu Jia ◽  
Weiming Yan ◽  
Jia Cao ◽  
...  

1971 ◽  
Vol 35 (2) ◽  
pp. 269-272 ◽  
Author(s):  
J. H. Smith ◽  
C. L. Douglas

2007 ◽  
Vol 53 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Denny Wiedow ◽  
Christel Baum ◽  
Peter Leinweber

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 894
Author(s):  
Yanpeng Wang ◽  
Adnan Abbas ◽  
Xiaochan Wang ◽  
Sijun Yang ◽  
Morice R. O. Odhiambo ◽  
...  

A field experiment was conducted to study the effects of different tillage methods, and their interaction on the dynamic changes of straw decomposition rate, mechanical properties, and micro-structure of the stalk. A nylon mesh bag technique was used. An obvious change was observed in the decomposition rate of straw, and its mechanical, and micro-structural properties. The decomposition rate of straw was increased in all tillage treatments. Specifically, it increased consistently in conventional and dry rotary tillage, and sharply in wet rotary tillage. Furthermore, for all tillage, the mechanical properties like shear and bending strengths decreased sharply while compressive strength first decreased linearly and then increased, whereas the micro-structure of wheat straw showed a fluctuating trend, i.e., it changed neither regularly nor consistently over time. Moreover, the micro-structure of the stalk explained the morphological changes to the straw that returned to the field, which may impact the mechanical properties. However, these changes could not explain the degradation trend of straw directly. The findings of the study could be used as a theoretical reference for the design of tillage and harvesting machinery keeping in view soil solidification and compaction dynamics.


Sign in / Sign up

Export Citation Format

Share Document