Wheat Straw Decomposition Patterns and Control Factors Under Nitrogen Fertilization

Author(s):  
Jin Liu ◽  
Yangquanwei Zhong ◽  
Xiaoyu Jia ◽  
Weiming Yan ◽  
Jia Cao ◽  
...  
Author(s):  
A.G. Filipova ◽  
A.V. Vysotskaya

The article presents the results of mathematical experiments with the system «Social potential of childhood in the Russian regions». In the structure of system divided into three subsystems – the «Reproduction of children in the region», «Children’s health» and «Education of children», for each defined its target factor (output parameter). The groups of infrastructure factors (education, health, culture and sport, transport), socio-economic, territorial-settlement, demographic and en-vironmental factors are designated as the factors that control the system (input parameters). The aim of the study is to build a model îf «Social potential of childhood in the Russian regions», as well as to conduct experiments to find the optimal ratio of the values of target and control factors. Three waves of experiments were conducted. The first wave is related to the analysis of the dynam-ics of indicators for 6 years. The second – with the selection of optimal values of control factors at fixed ideal values of target factors. The third wave allowed us to calculate the values of the target factors based on the selected optimal values of the control factors of the previous wave.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


1986 ◽  
Vol 6 (1) ◽  
pp. 54-61
Author(s):  
E J Baker ◽  
L R Keller ◽  
J A Schloss ◽  
J L Rosenbaum

After flagellar detachment in Chlamydomonas reinhardi, there is a rapid synthesis and accumulation of mRNAs for tubulin and other flagellar proteins. Maximum levels of these mRNAs (flagellar RNAs) are reached within 1 h after deflagellation, after which they are rapidly degraded to their predeflagellation levels. The degradation of alpha- and beta-tubulin RNAs was shown to be due to the shortening of their half-lives after accumulation (Baker et al., J. Cell Biol. 99:2074-2081, 1984). Deflagellation in the presence of protein synthesis inhibitors results in the accumulation of tubulin and other flagellar mRNAs by kinetics similar to those of controls. However, unlike controls, in which the accumulated mRNAs are rapidly degraded, these mRNAs are stabilized in cycloheximide. The stabilization by cycloheximide is specific for the flagellar mRNAs accumulated after deflagellation, since there is no change in the levels of flagellar mRNAs in nondeflagellated (uninduced) cells in the presence of cycloheximide. The kinetics of flagellar mRNA synthesis after deflagellation are shown to be the same in cycloheximide-treated and control cells by in vivo labeling and in vitro nuclear runoff experiments. These results show that protein synthesis is not required for the induced synthesis of flagellar mRNAs, and that all necessary transcriptional control factors are present in the cell before deflagellation, but that protein synthesis is required for the accelerated degradation of the accumulated flagellar mRNAs. Since cycloheximide prevents the induced synthesis and accumulation of flagellar proteins, it is possible that the product(s) of protein synthesis required for the accelerated decay of these mRNAs is a flagellar protein(s). The possibility that one or more flagellar proteins autoregulate the stability of the flagellar mRNAs is discussed.


2019 ◽  
Vol 18 (4) ◽  
pp. 71-82
Author(s):  
Barbara Marcinek ◽  
Wojciech Durlak ◽  
Mariusz Szmagara ◽  
Henryk Galant ◽  
Alicja Węgrzyn

The experiment studied the effect of various mulching terms of ‘Foxtrot’ tulips with wheat straw in combination with spraying of plantations with herbicides using various doses and different amounts of working liquid. The mulch was laid out just after planting and after the soil had frozen. The experiment included combinations, in which the mulch was left until the end of the growing season or removed in spring. Spraying with single (linuron 675 g·ha–1 + lenacyl 1000 g·ha–1) or double herbicide dose (linuron 1350 g·ha–1 + lenacyl 2000 g·ha–1) was made before covering the soil with mulch and also on mulch – two weeks after planting the bulbs, or in the spring after thawing the soil. Volumes of 300 dm3 and 600 dm3 of working liquid were used for spraying. Tulips covered with mulch bloomed 2–3 days later and formed longer shoots as compared to non-mulched ones. The highest yield of marketable bulbs and the first-selection ones was obtained from tulips mulched immediately after planting and sprayed 2 weeks later with herbicides used in a single dose of 600 dm3 of a working liquid. Mulching of tulips after soil freezing and removal of mulch in spring adversely affects the number and weight of commercial bulbs. The lowest yield was obtained in combinations, in which the mulch was not used. The use of additional nitrogen fertilization before laying out the mulch did not affect the yield of tulips. Herbicides can be used both before mulching and after covering the plantation with mulch. It is not necessary to increase the dose of the agent and the amount of water.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 473
Author(s):  
Izabela Gołąb-Bogacz ◽  
Waldemar Helios ◽  
Andrzej Kotecki ◽  
Marcin Kozak ◽  
Anna Jama-Rodzeńska

Because of the different opinions regarding nitrogen (N) requirements for Miscanthus × giganteus biomass production, we conducted an experiment with a set dose of nitrogen. The objective of this study was to examine the effects of nitrogen fertilization on the biomass yield, water content, and morphological features of rhizomes and aboveground plant parts in various terms during a growing season over the course of three years (2014–2016) in Lower Silesia (Wroclaw, Poland). The nitrogen fertilization (dose 60 kg/ha and control) significantly affected the number of shoots (p = 0.0018), the water concentration of rhizomes (p = 0.0004) and stems (p = 0.0218), the dry matter yield of leaves (p = 0.0000), and the nitrogen uptake (p = 0.0000). Nitrogen fertilization significantly affected the nitrogen uptake in all plant parts (p = 0.0000). Although low levels of nitrogen appeared to be important in maintaining the maximum growth potentials of mature Miscanthus × giganteus, the small reductions in the above- and belowground biomass production are unlikely to outweigh the environmental costs of applying nitrogen. More studies should use the protocols for the above- and belowground yield determination described in this paper in order to create site- and year-specific fertilizer regimes that are optimized for quality and yield for autumn (green) and spring (delayed) harvests.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rongfei Zhang

Abstract Because the heat island effect can make cities warmer than their surroundings, it can make urban dwellers uncomfortable and even affect their health, which is particularly pronounced in developed cities in southern China. To reduce the heat island effect and improve the environment, various types of vegetation have been planted in the urban green belt. Though previous studies have been conducted on the beauty, air purification functions and cooling effect of vegetation, little is concentrated on the different cooling effects and control factors of various common shrubs on the heat island effect in cities. In this study, five of the most regionally common shrubs were selected to study the cooling effect in Guangzhou, southern China. The maximum surface temperatures of five shrubs and pavement were compared using infrared temperature sensors from April 1st 2019 to October 31st 2019. Results show that (1) All five shrubs showed noticeable seasonal variation, and the average surface temperatures of the five shrubs were between 38.0 and 42.2 °C during May–August and 30.7–34.1 °C during the other seasons (April, September and October);. (2) Murraya exotica L. exhibited the best cooling effect on the maximum surface temperature. Its value was 44.7 °C, and the absolute difference values of Murraya exotica L. (10.3 ± 1.7 °C) were higher than any other shrub during the study period; (3) Both the LAI (R2 = 0.57, p < 0.01) and plant height (R2 = 0.13, p < 0.01) are control factors of the cooling effect on vegetation surface temperature for the five shrubs. This study revealed the differences in the cooling effect and influencing factors of five regionally common shrubs on the heat island effect. Research on the functional characteristics of plants and plant selection in urban green belts has both theoretical and practical significance.


Sign in / Sign up

Export Citation Format

Share Document