Introduction: soil erosion and participatory land use planning on the Loess Plateau in China

CATENA ◽  
2003 ◽  
Vol 54 (1-2) ◽  
pp. 1-5 ◽  
Author(s):  
Coen J. Ritsema
Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


CATENA ◽  
2014 ◽  
Vol 121 ◽  
pp. 151-163 ◽  
Author(s):  
Wenyi Sun ◽  
Quanqin Shao ◽  
Jiyuan Liu ◽  
Jun Zhai

2009 ◽  
Vol 33 (6) ◽  
pp. 793-804 ◽  
Author(s):  
Bo-Jie Fu ◽  
Ya-Feng Wang ◽  
Yi-He Lu ◽  
Chan-Sheng He ◽  
Li-Ding Chen ◽  
...  

Land use is one of the key factors affecting soil erosion in the Loess Plateau of China. This paper examines soil erosion under different land uses and land-use combinations using 137 Cs tracing in the Yangjuangou Catchment, a tributary of the Yan River in the Loess Plateau of Northern Shaanxi Province. The results show that the order of 137Cs activity in different land uses decreases sequentially from mature forest to grass to young forest to orchard to terrace crop, indicating that the mature forests had the lowest erosion rates while the terraced cropland produced the highest erosion amount. The majority of 137Cs is distributed in the top 0—10 cm of the soil layer. The 137Cs activity in mature forest and grass soil is significantly higher than in other land uses. Three land-use combinations on the hillslope were selected to study the relationship between land-use combination and soil erosion. The mixtures of ‘grass (6 years old) + mature forest (25 years old) + grass (25 years old)’ and ‘grass (6 years old) + young forest (6 years old) + mature forest (25 years old) + grass (25 years old)’ are better for soil erosion control, lowering soil erosion amount by 42% compared with a land-use combination of ‘grass (6 years old) and shrub (6 years old)’. The results provide an important basis for optimizing land-use combinations to control soil erosion on slopes and may also result in important ecological benefits.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


Author(s):  
Jianxiang Zhang ◽  
Naiang Wang ◽  
Yafeng Wang ◽  
Linhua Wang ◽  
Aiping Hu ◽  
...  

2004 ◽  
Vol 15 (1) ◽  
pp. 87-96 ◽  
Author(s):  
B. J. Fu ◽  
Q. H. Meng ◽  
Y. Qiu ◽  
W. W. Zhao ◽  
Q. J. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document