Characterizing heat transfer within a commercial-grade tubular solid oxide fuel cell for enhanced thermal management

2001 ◽  
Vol 26 (4) ◽  
pp. 369-379 ◽  
Author(s):  
C Haynes
2020 ◽  
Vol 280 ◽  
pp. 115899
Author(s):  
Zezhi Zeng ◽  
Yuping Qian ◽  
Yangjun Zhang ◽  
Changkun Hao ◽  
Dan Dan ◽  
...  

2021 ◽  
Vol 48 ◽  
pp. 101564
Author(s):  
Keqing Zheng ◽  
Ya Sun ◽  
Shuanglin Shen ◽  
Li Li ◽  
Shaorong Wang

Author(s):  
Zheng Dang ◽  
Hiroshi Iwai ◽  
Kenjiro Suzuki

In this study, numerical modeling of air and fuel flows, electrochemical processes, heat and mass transfer and electric potential fields and related electric current has been attempted for a disk shape planar solid oxide fuel cell (SOFC). This is the extension of the previous similar works on a tubular type solid oxide fuel cell, Nishino et al. (2003) and Li and Suzuki (2004). Numerical model to be established can be used as an effective means to simulate the phenomena in the cell. Such information can be used in the optimum design and thermal management of SOFC.


Author(s):  
Chao Zhang ◽  
Xiaoze Du ◽  
Lijun Yang ◽  
Yongping Yang ◽  
Yazhen Hao

The three dimension physico-mathematical model was established for the integrated planar solid oxide fuel cell (IP-SOFC) with the couples of multi components flow of reacting gas, heat transfer and electro-chemical process in order to reveal the inherent multi-scale effect of gas distributing duct and the porous support layer, and also, the microscale effect on the transport process in fuel cell. The mutual influences between heat transfer and chemical components transport were included in the model. In addition, the thermal effect of chemical reactions and its influences on polarizations of fuel cell were considered. And also, besides the Darcy diffusion, the Knudsen diffusion in the sub-microscale structure of the porous support is taken into consideration. Numerical simulation was employed to solve the model, by which, the output performance and polarization characteristics of a single cell were analyzed and compared for electrolyte-supported, anode-supported and cathode-supported SOFC, respectively. The present model was also validated comparing with the experimental data.


2014 ◽  
Vol 35 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Paulina Pianko-Oprych ◽  
Ekaterina Kasilova, ◽  
Zdzisław Jaworski

Abstract The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.


Sign in / Sign up

Export Citation Format

Share Document