Kinetics of hydrogen absorption in obliquely deposited MmNi4.5Al0.5 thin films

2000 ◽  
Vol 25 (6) ◽  
pp. 523-529
Author(s):  
I Jain
2010 ◽  
Vol 62 (5) ◽  
pp. 317-320 ◽  
Author(s):  
Jianglan Qu ◽  
Bo Sun ◽  
Rong Yang ◽  
Wei Zhao ◽  
Yuntao Wang ◽  
...  

Author(s):  
Vladimir S. Chirvony ◽  
Isaac Suárez ◽  
Jesús Rodríguez-Romero ◽  
Rubén Vázquez-Cárdenas ◽  
Jesus Sanchez-Diaz ◽  
...  

2011 ◽  
Vol 13 (37) ◽  
pp. 16530 ◽  
Author(s):  
Anja Wedig ◽  
Rotraut Merkle ◽  
Benjamin Stuhlhofer ◽  
Hanns-Ulrich Habermeier ◽  
Joachim Maier ◽  
...  

Author(s):  
Dominika Rajska ◽  
Agnieszka Brzózka ◽  
Katarzyna E. Hnida-Gut ◽  
Grzegorz D. Sulka
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 3778
Author(s):  
Gene Yang ◽  
So-Yeun Kim ◽  
Changhee Sohn ◽  
Jong K. Keum ◽  
Dongkyu Lee

Considerable attention has been directed to understanding the influence of heterointerfaces between Ruddlesden–Popper (RP) phases and ABO3 perovskites on the kinetics of oxygen electrocatalysis at elevated temperatures. Here, we report the effect of heterointerfaces on the oxygen surface exchange kinetics by employing heteroepitaxial oxide thin films formed by decorating LaNiO3 (LNO) on La1.85Sr0.15CuO4 (LSCO) thin films. Regardless of LNO decoration, tensile in-plane strain on LSCO films does not change. The oxygen surface exchange coefficients (kchem) of LSCO films extracted from electrical conductivity relaxation curves significantly increase with partial decorations of LNO, whereas full LNO coverage leads to the reduction in the kchem of LSCO films. The activation energy for oxygen exchange in LSCO films significantly decreases with partial LNO decorations in contrast with the full coverage of LNO. Optical spectroscopy reveals the increased oxygen vacancies in the partially covered LSCO films relative to the undecorated LSCO film. We attribute the enhanced oxygen surface exchange kinetics of LSCO to the increased oxygen vacancies by creating the heterointerface between LSCO and LNO.


Sign in / Sign up

Export Citation Format

Share Document