relaxation curves
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 4)

Mechanik ◽  
2021 ◽  
Vol 94 (12) ◽  
pp. 46-50
Author(s):  
Wiktor Szot

Increased interest in fused deposition modeling (FDM) resulting, for example, from its use in the production of utility models determines the undertaking of research on mechanical and rheological properties of materials. Mechanical and rheological properties of models made of materials used in FDM technology depend on technological parameters. In this paper, the effect of 0° and 90° print orientation on stress relaxation was analyzed. Additionally, the usefulness of the rheological model to describe the relaxation curve was evaluated. Stress relaxation tests were performed by tensile testing. The five-parameter Maxwell-Wiechert model was used to describe stress relaxation. The tests showed little effect of print orientation on the rheological parameters of the five-parameter model. The Maxwell-Wiechert model showed a very good approximation to the stress relaxation curves.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7527
Author(s):  
Tomasz Socha ◽  
Krzysztof Kula ◽  
Arkadiusz Denisiewicz ◽  
Grzegorz Lesiuk ◽  
Wojciech Błażejewski

An experimental and analytical approach to the relaxation problem of wood-based materials—OSB (Oriented Strand Boards—pressed wood-based composite panels) beams, including beams with CFRP (Carbon fiber reinforced polymer) tape composite reinforcement, is presented. It is a relevant engineering and scientific problem due to the fact that wood and wood-based materials, as well as composite reinforcements, are widely used in building constructions. Their rheological properties are very important and complicated to estimate. A 10 day long relaxation test of thick OSB beams without reinforcement and with CFRP tape was performed. A four-point bending test with five different bending levels was performed, during which the reduction of the loading force was measured. A five-parameter rheological model was used to describe the rheology of the beams. The equations of this model were calculated with the use of Laplace transform, whereas the values of the parameters were calculated based on the experimental relaxation curves. A high correlation between experimental and theoretical results was obtained. A beam reinforced with CFRP tape was treated as a system with a viscoelastic element (OSB) and an elastic element (CFRP), joined together without the possibility of slipping. The equations of the mathematical model were calculated based on the assumptions of the linear theory of viscoelasticity and the convolution integral. A good correlation between experimental and theoretical results was obtained. A significant redistribution of stresses was observed during the relaxation of the reinforced beam. The reinforced beams show a higher stiffness of approximately 63% and carry proportionally higher loads than unreinforced beams at the same deflection values.


Author(s):  
Wenqiang Liu ◽  
Michael Nguyen-Truong ◽  
Matt Ahern ◽  
Kevin Labus ◽  
Christian Puttlitz ◽  
...  

Abstract Ventricle dysfunction is the most common cause of heart failure, which leads to high mortality and morbidity. The mechanical behavior of the ventricle is critical to its physiological function. It is known that the ventricle is anisotropic and viscoelastic. However, the understanding of ventricular viscoelasticity is much less than that of its elasticity. Moreover, the left and right ventricles (LV&RV) are different in embryologic origin, anatomy, and function, but whether they distinguish in viscoelastic properties is unclear. We hypothesized that passive viscoelasticity is different between healthy LVs and RVs. Ex vivo cyclic biaxial tensile mechanical tests (1, 0.1, 0.01Hz) and stress relaxation (strain of 3, 6, 9, 12 15%) were performed for ventricles from healthy adult sheep. Outflow track direction was defined as the longitudinal direction. Hysteresis stress-strain loops and stress relaxation curves were obtained to quantify the viscoelastic properties. We found that the RV had more pronounced frequency-dependent viscoelastic changes than the LV. Under the physiological frequency (1Hz), the LV was more anisotropic in the elasticity and stiffer than the RV in both directions, whereas the RV was more anisotropic in the viscosity and more viscous than the LV in the longitudinal direction. The LV was quasi-linear viscoelastic in the longitudinal but not circumferential direction, and the RV was non-linear viscoelastic in both directions. This study is the first to investigate passive viscoelastic differences in healthy LVs and RVs, and the findings will deepen the understanding of biomechanical mechanisms of ventricular function.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1895
Author(s):  
Tomasz Kozior ◽  
Czesław Kundera

This research paper reviews the test results involving viscoelastic properties of cellular structure models made with the PolyJet Matrix—PJM additive technology. The designed test specimens were of complex cellular structure and made of three various photo-curable polymer resin types. Materials were selected taking into account the so-called “soft” and “tough” material groups. Compressive stress relaxation tests were conducted in accordance with the recommendations of standard ISO 3384, and the impact of the geometric structure shape and material selection on viscoelastic properties, as well as the most favorable geometric variants of the tested cellular structure models were determined. Mathematica and Origin software was used to conduct a statistical analysis of the test results and determine five-parameter functions approximating relaxation curves. The most favorable rheological was adopted and its mean parameters determined, which enables to match both printed model materials and their geometry in the future, to make a component with a specific rheological response. Furthermore, the test results indicated that there was a possibility of modelling cellular structures within the PJM technology, using support material as well.


Author(s):  
Michael A. Lopez ◽  
Sherina Bontiff ◽  
Mary Adeyeye ◽  
Aziz I Shaibani ◽  
Matthew S. Alexander ◽  
...  

The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that (1) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and (2) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-week-old mice whose muscles reflected the pre-fibrotic and pre-necrotic state. Compared to controls, 1) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and 2) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-months old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the pre-fibrotic/pre-necrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin.


Author(s):  
Keli Ren ◽  
Jingwei Gao ◽  
Dong Han

Differences in stiffness constitute an extremely important aspect of the mechanical differences between cancer cells and normal cells, and atomic force microscopy (AFM) is the most commonly used tool to characterize the difference in stiffness. However, the process of mechanical characterization using AFM has been controversial and the influence of the membrane tension on AFM measurement results was often ignored. Here, a physical model involving a simultaneous consideration of the effects of the cell membrane, cytoskeleton network and cytosol was proposed. We carried out a theoretical analysis of AFM force relaxation curves, and as a result solved many of the remaining controversial issues regarding AFM-based mechanical characterization of cells, and provided a quantitative solution for the membrane tension measured using AFM indentation experiments for the first time. From the results of experiments on cells with different adherent shapes and different pairs of normal cells and cancer cells, we found additional force provided by membrane tension to be the main component of the force applied to the AFM probe, with decreased cell membrane tension being the essential reason for the greater softness of cancer cells than of normal cells. Hence, regulating membrane tension may become an important method for regulating the behavior of cancer cells.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2471
Author(s):  
Rene Castro ◽  
Yulia Spivak ◽  
Sergey Shevchenko ◽  
Vyacheslav Moshnikov

The spectra of dielectric relaxation of macroporous silicon with a mesoporous skin layer in the frequency range 1–106 Hz during cooling (up to 293–173 K) and heating (293–333 K) are presented. Macroporous silicon (pore diameter ≈ 2.2–2.7 μm) with a meso-macroporous skin layer was obtained by the method of electrochemical anodic dissolution of monocrystalline silicon in a Unno-Imai cell. A mesoporous skin layer with a thickness of about 100–200 nm in the form of cone-shaped nanostructures with pore diameters near 13–25 nm and sizes of skeletal part about 35–40 nm by ion-electron microscopy was observed. The temperature dependence of the relaxation of the most probable relaxation time is characterized by two linear sections with different slope values; the change in the slope character is observed at T ≈ 250 K. The features of the distribution of relaxation times in meso-macroporous silicon at temperatures of 223, 273, and 293 K are revealed. The Havriliak-Negami approach was used for approximation of the relaxation curves ε″ = f(ν). The existence of a symmetric distribution of relaxers for all temperatures was found (Cole-Cole model). A discussion of results is provided, taking into account the structure of the studied object.


2021 ◽  
Vol 11 (9) ◽  
pp. 3778
Author(s):  
Gene Yang ◽  
So-Yeun Kim ◽  
Changhee Sohn ◽  
Jong K. Keum ◽  
Dongkyu Lee

Considerable attention has been directed to understanding the influence of heterointerfaces between Ruddlesden–Popper (RP) phases and ABO3 perovskites on the kinetics of oxygen electrocatalysis at elevated temperatures. Here, we report the effect of heterointerfaces on the oxygen surface exchange kinetics by employing heteroepitaxial oxide thin films formed by decorating LaNiO3 (LNO) on La1.85Sr0.15CuO4 (LSCO) thin films. Regardless of LNO decoration, tensile in-plane strain on LSCO films does not change. The oxygen surface exchange coefficients (kchem) of LSCO films extracted from electrical conductivity relaxation curves significantly increase with partial decorations of LNO, whereas full LNO coverage leads to the reduction in the kchem of LSCO films. The activation energy for oxygen exchange in LSCO films significantly decreases with partial LNO decorations in contrast with the full coverage of LNO. Optical spectroscopy reveals the increased oxygen vacancies in the partially covered LSCO films relative to the undecorated LSCO film. We attribute the enhanced oxygen surface exchange kinetics of LSCO to the increased oxygen vacancies by creating the heterointerface between LSCO and LNO.


Author(s):  
Xuanling Li ◽  
Xing Liu ◽  
Xiaoyu Song ◽  
Yinmei Li ◽  
Ming Li ◽  
...  

Abstract Many cellular processes are orchestrated by dynamic changes in the plasma membrane to form membrane projections and endocytic vesicles in response to extracellular environmental changes. Our previous studies show that ARF6-ACAP4-ezrin signaling regulates membrane dynamics and curvature in response to EGF stimulation. However, there is no quantitative measurement to relate molecular organization of membrane cytoskeletal remodeling to stimulus-elicited mechanosensation on the plasma membrane. Optical tweezers is a powerful tool in the study of membrane tension. Comparing to pulling out an entire membrane tether at one time, the step-like method is more efficient because multiple relaxation curves can be obtained from one membrane tether. Fewer models describe relaxation curves to characterize mechanical properties of cell membrane. Here we establish a new method to measure the membrane relaxation curve of HeLa cells judged by the relationship between membrane tether diameter and tensions. We obtained effective viscosities and static tensions by fitting relaxation curves to our model. We noticed the delicate structure of relaxation curves contains information of cytoskeletal remodeling and lateral protein diffusion. Our study established a quantitative measure to characterize the mechanosensation of epithelial cells in response to stimulus-elicited membrane dynamics.


Sign in / Sign up

Export Citation Format

Share Document