scholarly journals Measurement of the proton structure function F2 at very low Q2 at HERA

2000 ◽  
Vol 487 (1-2) ◽  
pp. 53-73 ◽  
Author(s):  
J. Breitweg ◽  
S. Chekanov ◽  
M. Derrick ◽  
D. Krakauer ◽  
S. Magill ◽  
...  
2004 ◽  
Vol 19 (31) ◽  
pp. 5435-5442 ◽  
Author(s):  
Y. S. KIM ◽  
MARILYN E. NOZ

The energy-momentum relations for massive and massless particles are E=p2/2m and E=pc respectively. According to Einstein, these two different expressions come from the same formula [Formula: see text]. Quarks and partons are believed to be the same particles, but they have quite different properties. Are they two different manifestations of the same covariant entity as in the case of Einstein's energy-momentum relation? The answer to this question is YES. It is possible to construct harmonic oscillator wave functions which can be Lorentz-boosted. They describe quarks bound together inside hadrons. When they are boosted to an infinite-momentum frame, these wave functions exhibit all the peculiar properties of Feynman's parton picture. This formalism leads to a parton distribution corresponding to the valence quarks, with a good agreement with the experimentally observed distribution.


2018 ◽  
Vol 33 (08) ◽  
pp. 1850046 ◽  
Author(s):  
D. K. Choudhury ◽  
Baishali Saikia

Froissart bound implies that the total proton–proton cross-section (or equivalently proton structure function) cannot rise faster than [Formula: see text]. Compatibility of such behavior with the notion of self-similarity in proton structure function was suggested by us sometime back. In the present work, we generalize and improve it further by considering more recent self-similarity based models of proton structure functions and compare with recent data as well as with the model of Block, Durand, Ha and McKay.


Sign in / Sign up

Export Citation Format

Share Document