Analytic Derivation of the Longitudinal Proton Structure Function FL(x, Q2) and the Reduced Cross Section σr(x, Q2) at the Leading Order and the Next-to-leading Order Approximations

Author(s):  
S. Zarrin ◽  
S. Dadfar
2018 ◽  
Vol 33 (08) ◽  
pp. 1850046 ◽  
Author(s):  
D. K. Choudhury ◽  
Baishali Saikia

Froissart bound implies that the total proton–proton cross-section (or equivalently proton structure function) cannot rise faster than [Formula: see text]. Compatibility of such behavior with the notion of self-similarity in proton structure function was suggested by us sometime back. In the present work, we generalize and improve it further by considering more recent self-similarity based models of proton structure functions and compare with recent data as well as with the model of Block, Durand, Ha and McKay.


2014 ◽  
Vol 29 (32) ◽  
pp. 1450189 ◽  
Author(s):  
G. R. Boroun ◽  
B. Rezaei ◽  
J. K. Sarma

In this paper, the evolutions of longitudinal proton structure function have been obtained at small x up to next-to-next-to-leading order using a hard Pomeron behavior. In our paper, evolutions of gluonic as well as heavy longitudinal structure functions have been obtained separately and the total contributions have been calculated. The total longitudinal structure functions have been compared with results of Donnachie–Landshoff (DL) model, Color Dipole (CD) model, kT factorization and H1 data.


2012 ◽  
Vol 27 (31) ◽  
pp. 1250179 ◽  
Author(s):  
H. NEMATOLLAHI ◽  
M. M. YAZDANPANAH ◽  
A. MIRJALILI

We compute the longitudinal structure function of the proton (FL) at the next-to-next-to-leading order (NNLO) approximation. For this purpose, we should know the flavor-singlet, non-singlet and gluon distribution functions of the proton. We use the chiral quark model (χQM) to determine these distributions. Finally, we compare the results of FL with the recent ZEUZ and H1 experimental data and some fitting parametrizations. Our results are in good agreement with the data and the related fittings.


2017 ◽  
Vol 32 (14) ◽  
pp. 1750065 ◽  
Author(s):  
Marzieh Mottaghizadeh ◽  
Parvin Eslami ◽  
Fatemeh Taghavi-Shahri

We analytically solved the QED[Formula: see text]QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED [Formula: see text] (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) [Formula: see text] (Ref. 4). We also compared the proton structure function, [Formula: see text], with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high [Formula: see text] and [Formula: see text].


2000 ◽  
Vol 487 (1-2) ◽  
pp. 53-73 ◽  
Author(s):  
J. Breitweg ◽  
S. Chekanov ◽  
M. Derrick ◽  
D. Krakauer ◽  
S. Magill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document