scholarly journals Can extra dimensions accessible to the SM explain the recent measurement of anomalous magnetic moment of the muon?

2001 ◽  
Vol 511 (1) ◽  
pp. 85-91 ◽  
Author(s):  
K. Agashe ◽  
N.G. Deshpande ◽  
G.-H. Wu
2021 ◽  
Vol 81 (10) ◽  
Author(s):  
D. W. P. Amaral ◽  
D. G. Cerdeño ◽  
A. Cheek ◽  
P. Foldenauer

AbstractThe recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at $$4.2\,\sigma $$ 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ with an effective $$U(1)_{L_\mu }$$ U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64$$\mu $$ μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with $$(g-2)_\mu $$ ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE$$\nu $$ ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64$$\mu $$ μ results, the exclusion limits (or reconstructed regions) of future CE$$\nu $$ ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ is larger than for $$U(1)_{L_\mu }$$ U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential $$5\,\sigma $$ 5 σ discovery of a $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to $$1\,{\mathrm {keV}}_{\mathrm {nr}} $$ 1 keV nr .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Wen Qin ◽  
Ling-Yun Dai ◽  
Jorge Portolés

Abstract A coherent study of e+e− annihilation into two (π+π−, K+K−) and three (π+π−π0, π+π−η) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E ≲ 2 GeV. The work of [L.Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 ± 7.4) × 10−10 (2.9σ) from the experimental value.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Debajyoti Choudhury ◽  
Suvam Maharana ◽  
Vandana Sahdev ◽  
Divya Sachdeva

1965 ◽  
Vol 140 (2B) ◽  
pp. B397-B407 ◽  
Author(s):  
S. D. Drell ◽  
H. R. Pagels

2002 ◽  
Vol 634 (1-2) ◽  
pp. 230-246 ◽  
Author(s):  
Giacomo Cacciapaglia ◽  
Marco Cirelli ◽  
Giampaolo Cristadoro

Sign in / Sign up

Export Citation Format

Share Document