scholarly journals Divergence-free vector-field and reduction

1998 ◽  
Vol 244 (5) ◽  
pp. 377-382 ◽  
Author(s):  
Debin Huang ◽  
Xiaohua Zhao ◽  
Zengrong Liu
1998 ◽  
Vol 18 (3) ◽  
pp. 717-723
Author(s):  
SOL SCHWARTZMAN

Suppose we are given an analytic divergence free vector field $(X,Y)$ on the standard torus. We can find constants $a$ and $b$ and a function $F(x,y)$ of period one in both $x$ and $y$ such that $(X,Y)=(a-F_y,b+F_x)$. For a given $F$, let $P$ be the map sending $(x,y)$ into $(F_y(x,y),-F_x(x,y))$. Let $A$ be the image of the torus under this map and let $B$ be the image under this map of the set of points $(x,y)$ at which $F_{xx}F_{yy}-(F_{xy})^2$ vanishes. For any point $(a,b)$ in the complement of the interior of $A$, the flow on the torus arising from the differential equations $dx/dt=a-F_y(x,y)$, $dy/dt=b+F_x(x,y)$ is metrically transitive if and only if $a/b$ is irrational. For any point in $A$ but not in $B$ the flow is not metrically transitive. Moreover, if $a/b$ is irrational but the flow on the torus is not metrically transitive and we use our differential equations to define a flow in the entire plane (rather than on the torus), this flow has a nonstationary periodic orbit. It is an open question whether a point $(a,b)$ in the interior of $A$ can give rise to a metrically transitive flow.


Author(s):  
O. Skrinjar ◽  
A. Bistoquet ◽  
J. Oshinski ◽  
K. Sundareswaran ◽  
D. Frakes ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
pp. 429-436 ◽  
Author(s):  
Manseob Lee

AbstractWe show that if a vector fieldXhas theC1robustly barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, if a genericC1-vector field has the barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, we apply the results to the divergence free vector fields. It is an extension of the results of the barycenter property for generic diffeomorphisms and volume preserving diffeomorphisms [1].


Author(s):  
Philip Isett

This chapter provides a more technical outline of the construction, starting with a solution to the Euler-Reynolds system and a correction v₁ = v + V, p₁ = p + P. The correction V is a divergence free vector field which oscillates rapidly compared to v. In the construction, there will always be a bounded number of waves Vsubscript I (at most 192) which are nonzero at any given time t. Each individual wave Vsubscript I composing V is a complex-valued, divergence free vector field that oscillates rapidly in only one direction. The chapter introduces several ways in which to represent each Vsubscript I. Finally, it presents five main error terms: the Transport term, the High–Low Interaction term, the High–High Interference terms, the Stress term, and the Mollification terms.


2007 ◽  
Vol 27 (5) ◽  
pp. 1399-1417 ◽  
Author(s):  
ALEXANDER ARBIETO ◽  
CARLOS MATHEUS

AbstractWe prove that in a compact manifold of dimension n≥2, C1+α volume-preserving diffeomorphisms that are robustly transitive in the C1-topology have a dominated splitting. Also we prove that for three-dimensional compact manifolds, an isolated robustly transitive invariant set for a divergence-free vector field cannot have a singularity. In particular, we prove that robustly transitive divergence-free vector fields in three-dimensional manifolds are Anosov. For this, we prove a ‘pasting’ lemma, which allows us to make perturbations in conservative systems.


2015 ◽  
Vol 3 (2) ◽  
pp. 73
Author(s):  
Alexander G. Ramm

<p>A simple proof is given for the explicit formula which allows one to recover a \(C^2\) – smooth vector field \(A=A(x)\) in \(\mathbb{R}^3\), decaying at infinity, from the knowledge of its \(\nabla \times A\) and \(\nabla \cdot A\). The representation of \(A\) as a sum of the gradient field and a divergence-free vector fields is derived from this formula. Similar results are obtained for a vector field in a bounded \(C^2\) - smooth domain.</p>


Sign in / Sign up

Export Citation Format

Share Document