Transfer function between surface sediment diatom assemblages and sea-surface temperature and salinity of the Labrador Sea

1999 ◽  
Vol 36 (4) ◽  
pp. 249-267 ◽  
Author(s):  
Michèle A De Sève
2018 ◽  
Author(s):  
Lukas Jonkers ◽  
Michal Kučera

Abstract. The species composition of many groups of marine plankton appears well predicted by sea surface temperature (SST). Consequently, fossil plankton assemblages have been widely used to reconstruct past SST. Most applications of this approach make use of the highest possible taxonomic resolution. However, not all species are sensitive to temperature and their distribution may be governed by other parameters. There are thus reasons to question the merit of including information all species, both for transfer function performance and for its effect on reconstructions. Here we investigate the effect of species selection on planktonic foraminifera transfer functions. We assess species importance for transfer function models using a random forest technique and evaluate the performance of models with increasing number of species. Irrespective of using models that use the entire training set (weighted averaging) or models that use only a subset of the training set (modern analogue technique), we find that the majority of foraminifera species does not carry useful information for temperature reconstruction. Less than one third of the species in the training set is required to provide a temperature estimate with a prediction error comparable to a transfer function that uses all species in the training set. However, species selection matters for paleotemperature estimates. We find that transfer function models with different number of species but with the same error may yield different reconstructions of sea surface temperature when applied on the same fossil assemblages. This ambiguity in the reconstructions implies that fossil assemblage change reflects a combination of temperature and other environmental factors. The contribution of the additional factors is site and time specific, indicating ecological and geological complexity in the formation of the sedimentary assemblages. The possibility of obtaining multiple different reconstructions from a single sediment record presents a previously unrecognised source of uncertainty for sea surface temperature estimates based on planktonic foraminifera assemblages. This uncertainty can be evaluated by determining the sensitivity of the reconstructions to species pruning.


2013 ◽  
Vol 26 (22) ◽  
pp. 9155-9174 ◽  
Author(s):  
Christopher D. Roberts ◽  
Freya K. Garry ◽  
Laura C. Jackson

Abstract The Atlantic meridional overturning circulation (AMOC) is an important component of the North Atlantic climate system. Here, simulations from 10 coupled climate models are used to calculate patterns of sea surface temperature (SST) and subsurface density change associated with decadal AMOC variability. The models are evaluated using observational constraints and it is shown that all 10 models suffer from North Atlantic Deep Water transports that are too shallow, although the biases are least severe in the Community Climate System Model, version 4 (CCSM4). In the models that best compare with observations, positive AMOC anomalies are associated with reduced Labrador Sea stratification and increased midocean (800–1800 m) densities in the subpolar gyre. Maximum correlations occur when AMOC anomalies lag Labrador Sea stratification and subsurface density anomalies by 2–6 yr and 0–3 yr, respectively. In all 10 models, North Atlantic warming follows positive AMOC anomalies, but the patterns and magnitudes of SST change are variable. A simple detection and attribution analysis is then used to evaluate the utility of Atlantic midocean density and Labrador Sea stratification indices for detecting changes to the AMOC in the presence of increasing CO2 concentrations. It is shown that trends in midocean density are identifiable (although not attributable) significantly earlier than trends in the AMOC. For this reason, subsurface density observations could be a useful complement to transport observations made at specific latitudes and may help with the more rapid diagnosis of basin-scale changes in the AMOC. Using existing observations, it is not yet possible to detect a robust trend in the AMOC using either midocean densities or transport observations from 26.5°N.


2019 ◽  
Vol 15 (3) ◽  
pp. 881-891
Author(s):  
Lukas Jonkers ◽  
Michal Kučera

Abstract. The species composition of many groups of marine plankton appears well predicted by sea surface temperature (SST). Consequently, fossil plankton assemblages have been widely used to reconstruct past SST. Most applications of this approach make use of the highest possible taxonomic resolution. However, not all species are sensitive to temperature, and their distribution may be governed by other parameters. There are thus reasons to question the merit of including information about all species, both for transfer function performance and for its effect on reconstructions. Here we investigate the effect of species selection on planktonic foraminifera transfer functions. We assess species importance for transfer function models using a random forest technique and evaluate the performance of models with an increasing number of species. Irrespective of using models that use the entire training set (weighted averaging) or models that use only a subset of the training set (modern analogue technique), we find that the majority of foraminifera species does not carry useful information for temperature reconstruction. Less than one-third of the species in the training set is required to provide a temperature estimate with a prediction error comparable to a transfer function that uses all species in the training set. However, species selection matters for paleotemperature estimates. We find that transfer function models with a different number of species but with the same error may yield different reconstructions of sea surface temperature when applied to the same fossil assemblages. This ambiguity in the reconstructions implies that fossil assemblage change reflects a combination of temperature and other environmental factors. The contribution of the additional factors is site and time specific, indicating ecological and geological complexity in the formation of the sedimentary assemblages. The possibility of obtaining multiple different reconstructions from a single sediment record presents a previously unrecognized source of uncertainty for sea surface temperature estimates based on planktonic foraminifera assemblages. This uncertainty can be evaluated by determining the sensitivity of the reconstructions to species pruning.


1997 ◽  
Vol 16 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Brian M. Funnell ◽  
Jane E. Swallow

Abstract. Quantitative investigation of populations of planktonic foraminifera in core-top and down-core (top 10 cm) samples from 14 sites in the NE Atlantic, between 19° to 52°N and 11° to 30°W, have revealed no intra-sample, inter-sample or down-core variability beyond that to be expected on counts of 300 specimens (2 standard deviations, 95% confidence interval). Application of F20 transfer function analysis shows that estimates of sea-surface temperature, based on these counts, fall within a range of ±1.9°C (precision). However, when these estimates are compared with ‘actual’ temperatures within the 1° latitude/longitude squares containing the sites, the estimate errors range as high as ±3.6°C (accuracy). These results indicate there is a continuing need to improve methods for estimating proxy temperatures from planktonic foraminifera, in order to match the requirements of numerical modellers of past climates.


Sign in / Sign up

Export Citation Format

Share Document