Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction–modification genes with large genome polymorphisms

Gene ◽  
2000 ◽  
Vol 259 (1-2) ◽  
pp. 109-121 ◽  
Author(s):  
Akito Chinen ◽  
Ikuo Uchiyama ◽  
Ichizo Kobayashi
2006 ◽  
Vol 72 (8) ◽  
pp. 5367-5375 ◽  
Author(s):  
Miki Watanabe ◽  
Harumi Yuzawa ◽  
Naofumi Handa ◽  
Ichizo Kobayashi

ABSTRACT Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5′-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5′-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95°C and retained at least half the activity after 9 min at 95°C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of k cat, Km , DNA, and Km , AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Ken-ichi Miyazono ◽  
Yoshikazu Furuta ◽  
Miki Watanabe-Matsui ◽  
Takuya Miyakawa ◽  
Tomoko Ito ◽  
...  

2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Brian P. Anton ◽  
Richard J. Roberts ◽  
Alexey Fomenkov ◽  
Allison Humbert ◽  
Natalie Stoian ◽  
...  

We report the complete genome sequences of two strains of the Alphaproteobacteria genus Rhodobacter, Rhodobacter blasticus 28/5, the source of the commercially available enzyme RsaI, and a new isolate of Rhodobacter sphaeroides 2.4.1. Both strains contain multiple restriction-modification systems, and their DNA methylation motifs are included in this report.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Kelly Hartigan ◽  
John Hudson Alarcon ◽  
Andrew Cao ◽  
Yongzhen Chen ◽  
Nicole Curnutt ◽  
...  

We present here the complete genomes of two Streptomyces bacteriophages, Satis and JustBecause. Both phages were isolated directly from soil samples collected in St. Louis, MO, and present with an unusual prolate head morphology and large genome lengths of over 180 kb.


2020 ◽  
Author(s):  
Atsushi Ota ◽  
Yukiko Nishiuchi ◽  
Noriko Nakanishi ◽  
Yoshio Iijima ◽  
Tomotada Iwamoto ◽  
...  

ABSTRACTRestriction–modification (RM) systems are typically regarded as “primitive immune systems” in bacteria. The roles of methylation in gene regulation, segregation, and mismatch repair are increasingly recognized. To analyze methyltransferase (MTase) diversity in Streptococcus pyogenes, we compared the RM system distribution in eight new complete genome sequences obtained here and in the database-deposited complete genome sequences of 51 strains. The MTase gene distribution showed that type I MTases often change DNA sequence specificity via switching target recognition domains between strains. The type II MTases in the included strains fell into two groups: a prophage-dominant one and a CRISPR-dominant one. Some highly variable type II MTases were found in the prophage region, suggesting that MTases acquired from phage DNA can generate methylome diversity. Additionally, to investigate the possible contribution of DNA methylation to phenotype, we compared the methylomes and transcriptomes from the four most closely related strains, the results of which suggest that phage-derived methylases possibly regulate the methylome, and, hence, regulate expression levels in S. pyogenes. Our findings will benefit further experimental work on the relationship between virulence genes and pathogenicity in S. pyogenes.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Mario Jaramillo ◽  
Jennie Williams ◽  
Julie Reitter ◽  
Kenneth Mills

Sign in / Sign up

Export Citation Format

Share Document