dna methyltransferases
Recently Published Documents


TOTAL DOCUMENTS

1037
(FIVE YEARS 331)

H-INDEX

86
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Kajal Rajput ◽  
Mohammad Nafees Ansari ◽  
Somesh Kumar Jha ◽  
Pankaj Sharma ◽  
Sudeshna Datta ◽  
...  

Sphingolipid and ganglioside metabolic pathways are crucial components of cell signalling, having established roles in tumor cell proliferation, invasion, and migration. However, regulatory mechanisms controlling sphingolipid and ganglioside synthesis in mammalian cells is less known. Here, we show that RICTOR, the regulatory subunit of mTORC2, regulates the synthesis of sphingolipids and gangliosides in Luminal breast cancer-specific MCF-7 cells through transcriptional and epigenetic mechanisms. RICTOR regulates glucosylceramide levels by modulating the expression of UDP-Glucose Ceramide Glucosyl transferase (UGCG). We identify Zinc Finger protein X-linked (ZFX) as a RICTOR-responsive transcription factor whose recruitment to the UGCG promoter is regulated by DNA methyltransferases and histone demethylase (KDM5A) that are known AKT substrates. We further demonstrate that RICTOR regulates the synthesis of GD3 gangliosides through ZFX and UGCG, and triggers the activation of the EGFR signalling pathway, thereby promoting tumor growth. In line with our findings in cell culture and mice models, we observe an elevated expression of RICTOR, ZFX, and UGCG in Indian Luminal breast cancer patient samples, and in TCGA and METABRIC datasets. Together, we establish a key regulatory circuit, RICTOR-AKT-ZFX-UGCG-Ganglioside-EGFR-AKT, and elucidate its contribution to breast cancer progression.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Jinhui Liu ◽  
Yuanyuan Wang ◽  
Jian Yin ◽  
Yan Yang ◽  
Rui Geng ◽  
...  

Background. Serine/arginine-rich splicing factor 9 (SRSF9) is one of the members of SRSF gene family and related to the tumorigenesis and the progression of tumor. However, whether SRSF9 has a crucial role across pan-cancer is still unknown. Methods. In this study, we used public databases, such as The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx), to analyze SRSF9 expression level among tumor and normal cells. Survival analysis, K-M plotter, and PrognoScan were used to analyze the prognosis value of SRSF9, regarding to overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). Moreover, we performed the correlation between SRSF9 and clinical characteristics (including the outcome of prognosis), as well as molecular events of tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint gene, tumor microenvironment (TME), immune infiltrating cells, mismatch repair (MMR) genes, m6A genes, DNA methyltransferases, and neoantigen with bioinformatics methods and TISIDB, TIMER, and Sangerbox websites. Results. In general, SRSF9 expression was upregulated in most cancers, such as BLCA, CHOL, and UCEC, which SRSF9 was associated with short survival and severe progression. In COAD, STAD, and UCEC, SRSF9 expression was positively related to both TMB and MSI. In BRCA, BLCA, ESCA, GBM, HNSC, LUSC, LUAD, OV, PRAD, TGCT, THCA, and UCEC, both immune score and stomal score showed a negative relationship with SRSF9 expression. Immune score showed a positive relationship with SRSF9 expression in LGG. SRSF9 expression had a significant and positive correlation with six types of immune infiltration cells in LGG, KIRC, LIHC, PCPG, PRAD, SKCM, THCA, and THYM, except in LUSC. In LIHC, SRSF9 was highly significant correlated with most immune checkpoint genes. For neoantigens, correlation between SRSF9 and the quantity of neoantigens was significantly positive in some cancer types. SRSF9 was also correlated with MMR genes, m6A genes, and DNA methyltransferases. In the 33 cancer types, gene set enrichment analysis (GSEA) demonstrated that SRSF9 was correlated with multiple functions and signaling pathways. Conclusion. These findings demonstrated that SRSF9 may be a new biomarker for the prognosis and immunotherapy in various cancers. As a result, it will be beneficial to provide new therapies for cancer patients, thereby improving the treatment and prognosis of cancer patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yimin Guo ◽  
Xiaoqing Yuan ◽  
Luna Hong ◽  
Qiujie Wang ◽  
Shanying Liu ◽  
...  

Chronic asthma is characterized by airway inflammation and irreversible airway remodeling. Epithelial-mesenchymal transition (EMT) is a typical pathological change of airway remodeling. Our previous research demonstrated miR-23b inhibited airway smooth muscle proliferation while the function of miR-23b-3p has not been reported yet. Besides, miRNA is regulated by many factors, including DNA methylation. The function of miR-23b-3p and whether it is regulated by DNA methylation are worth exploring. Balb/c mice were given OVA sensitization to develop the asthmatic model. Expression of miR-23b-3p and EMT markers were measured by RT-qPCR, WB and immunohistochemistry (IHC). DNA methylation was detected by methylation-specific PCR (MSP) and the MassARRAY System. Asthmatic mice and TGF-β1-stimulated bronchial epithelial cells (BEAS-2B) showed EMT with increased miR-23b-3p. Overexpression of miR-23b-3p promoted EMT and migration, while inhibition of miR-23b-3p reversed these transitions. DNA methyltransferases were decreased in asthmatic mice. MSP and MassARRAY System detected the promotor of miR-23b showed DNA hypomethylation. DNA methyltransferase inhibitor 5’-AZA-CdZ increased the expression of miR-23b-3p. Meanwhile, PTEN was identified as a target gene of miR-23b-3p. Our results indicated that promotor hypomethylation mediated upregulation of miR-23b-3p targets PTEN to promote EMT in chronic asthma. miR-23b-3p and DNA methylation might be potential therapeutic targets for irreversible airway remodeling.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1544
Author(s):  
Hongqian Chu ◽  
Yongfei Hu ◽  
Bing Zhang ◽  
Zhaogang Sun ◽  
Baoli Zhu

Besides the genomic variants, epigenetic mechanisms such as DNA methylation also have an effect on drug resistance. This study aimed to investigate the methylomes of totally/extensively drug-resistant M. tuberculosis clinical isolates using the PacBio single-molecule real-time technology. The results showed they were almost the same as the pan-susceptible ones. Genetics and bioinformatics analysis confirmed three DNA methyltransferases—MamA, MamB, and HsdM. Moreover, anti-tuberculosis drug treatment did not change the methylomes. In addition, the knockout of the DNA methyltransferase hsdM gene in the extensively drug-resistant clinical isolate 11826 revealed that the motifs of GTAYN4ATC modified by HsdM were completely demethylated. Furthermore, the results of the methylated DNA target analysis found that HsdM was mainly involved in redox-related pathways, especially the prodrug isoniazid active protein KatG. HsdM also targeted three drug-targeted genes, eis, embB, and gyrA, and three drug transporters (Rv0194, Rv1410, and Rv1877), which mildly affected the drug susceptibility. The overexpression of HsdM in M. smegmatis increased the basal mutation rate. Our results suggested that DNA methyltransferase HsdM affected the drug resistance of M. tuberculosis by modulating the gene expression of redox, drug targets and transporters, and gene mutation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13453
Author(s):  
Bożena Bukowska ◽  
Paulina Sicińska

Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP—BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jaemyung Choi ◽  
David B Lyons ◽  
Daniel Zilberman

Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Zhou ◽  
Li Ji ◽  
Xueying Shi ◽  
Dawei Deng ◽  
Fangyue Guo ◽  
...  

AbstractIntrahepatic cholangiocarcinoma (CHOL) remains a rare malignancy, ranking as the leading lethal primary liver cancer worldwide. However, the biological functions of integrator complex subunit 8 (INTS8) in CHOL remain unknown. Thus, this research aimed to explore the potential role of INTS8 as a novel diagnostic or therapeutic target in CHOL. Differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO) datasets were obtained by the “RRA” package in R software. The “maftools” package was used to visualize the CHOL mutation data from The Cancer Genome Atlas (TCGA) database. The expression of INTS8 was detected by performing quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry in cell lines and human samples. The association between subtypes of tumour-infiltrating immune cells (TIICs) and INTS8 expression in CHOL was determined by using CIBERSORT tools. We evaluated the correlations between INTS8 expression and mismatch repair (MMR) genes and DNA methyltransferases (DNMTs) in pan-cancer analysis. Finally, the pan-cancer prognostic signature of INTS8 was identified by univariate analysis. We obtained the mutation landscapes of an RRA gene set in CHOL. The expression of INTS8 was upregulated in CHOL cell lines and human CHOL samples. Furthermore, INTS8 expression was closely associated with a distinct landscape of TIICs, MMR genes, and DNMTs in CHOL. In addition, the high INTS8 expression group presented significantly poor outcomes, including overall survival (OS), disease-specific survival (DSS) and disease-free interval (DFI) (p < 0.05) in pan-cancer. INTS8 contributes to the tumorigenesis and progression of CHOL. Our study highlights the significant role of INTS8 in CHOL and pan-cancers, providing a valuable molecular target for cancer research.


2021 ◽  
Vol 22 (23) ◽  
pp. 12989
Author(s):  
Witold Józef Światowy ◽  
Hanna Drzewiecka ◽  
Michalina Kliber ◽  
Maria Sąsiadek ◽  
Paweł Karpiński ◽  
...  

Physical activity is a strong stimulus influencing the overall physiology of the human body. Exercises lead to biochemical changes in various tissues and exert an impact on gene expression. Exercise-induced changes in gene expression may be mediated by epigenetic modifications, which rearrange the chromatin structure and therefore modulate its accessibility for transcription factors. One of such epigenetic mark is DNA methylation that involves an attachment of a methyl group to the fifth carbon of cytosine residue present in CG dinucleotides (CpG). DNA methylation is catalyzed by a family of DNA methyltransferases. This reversible DNA modification results in the recruitment of proteins containing methyl binding domain and further transcriptional co-repressors leading to the silencing of gene expression. The accumulation of CpG dinucleotides, referred as CpG islands, occurs at the promoter regions in a great majority of human genes. Therefore, changes in DNA methylation profile affect the transcription of multiple genes. A growing body of evidence indicates that exercise training modulates DNA methylation in muscles and adipose tissue. Some of these epigenetic markers were associated with a reduced risk of chronic diseases. This review summarizes the current knowledge about the influence of physical activity on the DNA methylation status in humans.


2021 ◽  
Vol 9 (12) ◽  
pp. 2474
Author(s):  
Bowen Meng ◽  
Naomi Epp ◽  
Winsen Wijaya ◽  
Jan Mrázek ◽  
Timothy R. Hoover

DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended −10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.


2021 ◽  
pp. mcs.a005942
Author(s):  
Tamara J. Hagoel ◽  
Eduardo Cortez Gomez ◽  
Ajay Gupta ◽  
Clare J. Twist ◽  
Rafal Kozielski ◽  
...  

Undifferentiated soft tissue sarcomas (UDSTS ) are a group of mesenchymal tumors that remain a diagnostic challenge due to their morphologic heterogeneity and unclear histologic origin (Peters et al. 2015b). In this case report, we present the first multi-omics molecular signature for a BCOR-CCNB3 sarcoma (BCS) that includes mutation analysis, gene expression, DNA methylation, and mi-RNA expression. We identify a paucity of additional mutations in this tumor and detail that there is significant dysregulation of gene expression of epigeneic remodeling agents including key members of the PRC, Sin3A/3b, NuRD, and NcoR/SMRT complexes and the DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. This is accompanied by significant DNA methylation changes and dysregulation of multiple miRNA with known links to tumorigenesis. This study significantly increases our understanding of the BCOR effects on fusion positive undifferentiated sarcomas at both the genomic and epigenomic level and suggests that as better-tailored and more refined treatment algorithms continue to evolve, epigenetic modifying agents should be further evaluated for their efficacy against these tumors.


Sign in / Sign up

Export Citation Format

Share Document