Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway

2003 ◽  
Vol 180 (1-3) ◽  
pp. 11-24 ◽  
Author(s):  
Kjell Andreassen ◽  
Stein M. Tomter
Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 249 ◽  
Author(s):  
José Riofrío ◽  
Miren del Río ◽  
Douglas Maguire ◽  
Felipe Bravo

Models that incorporate known species-mixing effects on tree growth are essential tools to properly design silvicultural guidelines for mixed-species stands. Here, we developed generalized height–diameter (h-d) and basal area growth models for mixed stands of two main forest species in Spain: Scots pine (Pinus sylvestris L.) and Maritime pine (Pinus pinaster Ait.). Mixed-effects models were fitted from plot measurement and tree rings data from 726 Scots pine and 693 Maritime pine trees from mixed and pure stands in the Northern Iberian Range in Spain, with the primary objective of representing interactions between the species where they are interspersed in mixtures of varying proportions. An independent dataset was used to test the performance of the h-d models against models previously fitted for monospecific stands of both species. Basal area increment models were evaluated using a 10-fold block cross-validation procedure. We found that species mixing had contrasting effects on the species in both models. In h-d models, the species-mixing proportion determined the effect of species interactions. Basal area growth models showed that interspecific competition was influential only for Maritime pine; however, these effects differed depending on the mode of competition. For Scots pine, tree growth was not restricted by interspecies competition. The combination of mixed-effect models and the inclusion of parameters expressing species-mixing enhanced estimates of tree height and basal area growth compared with the available models previously developed for pure stands. Although the species-mixing effects were successfully represented in the fitted models, additional model components for accurately simulating the stand dynamics of mixtures with Scots pine and Maritime pine and other species mixtures require similar model refinements. Upon the completion of analyses required for these model refinements, the degree of improvement in simulating growth in species mixtures, including the effects of different management options, can be evaluated.


2016 ◽  
Vol 136 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Jérôme Perin ◽  
Hugues Claessens ◽  
Philippe Lejeune ◽  
Yves Brostaux ◽  
Jacques Hébert

2020 ◽  
Vol 93 (5) ◽  
pp. 589-600
Author(s):  
Kjersti Holt Hanssen ◽  
Johan Asplund ◽  
Nicholas Clarke ◽  
Ruben Selmer ◽  
Line Nybakken

Abstract We fertilized a Norway spruce (Picea abies (L.) Karst.) stand on rich mineral soil with 3 t ha−1 of wood ash (ASH), 150 kg ha−1 of nitrogen (N) or a combination of wood ash and nitrogen (ASH + N), in addition to unfertilized control plots. After five growing seasons, we remeasured the trees and took core samples. Current- and previous-year needles were sampled and analyzed for total nitrogen and carbon, low-molecular weight phenolics and condensed tannins. Annual volume increment and standing volume were significantly higher in the ASH + N treatment than in control plots after 5 years. N gave a significant positive effect on basal area growth in the third year, after which the effect diminished. The ASH + N treated trees, on the other hand, showed an increasing basal area growth trend throughout the period. ASH reduced the total concentration of low-molecular weight phenolic compounds significantly in current-year needles. Phenolic acids increased under both ASH and ASH + N, while flavonoids decreased significantly under the same treatments compared to N. By including annual growth rate before fertilization in the analyses, the effect of N-treatment on flavonoids was positive only in trees with higher growth rates, and in those trees the concentration was higher than in both ASH-treated plots and controls. An acetophenone, constituting more than half of the total low-molecular weight phenolics concentration, was strongly reduced under all fertilization treatments. These results demonstrate that in addition to effects on tree growth, fertilization of the forest floor also has a strong influence on other metabolic processes of trees, with potential implications for ecosystem functioning.


1984 ◽  
Vol 14 (2) ◽  
pp. 266-270 ◽  
Author(s):  
Frederick W. Smith ◽  
David R. M. Scott

A competitive index for lodgepole pine (Pinuscontorta Dougl.) trees in central Oregon is developed from seasonal basal area growth and an indirect estimator of foliar leaf area. Differences in seasonal basal area growth and the ratio of basal area growth to sapwood basal area between trees with and without neighbors are used to document growth reductions owing to the proximity of competing individuals. A regression between basal area growth and sapwood basal area (an estimator of leaf area) is used as a predictor of maximum potential basal area growth for trees growing free of competition. The competitive index is determined as the ratio of actual to potential basal area growth for individual trees. This index standardizes growth against differences in tree size and site conditions. Plant and soil water relations are considered as possible mechanisms of competitive interaction. Moderate minimum seasonal values of predawn leaf pressure potentials (−0.76 to −0.92 MPa) and minor differences between trees in different competitive classes led to the conclusion that soil water may not be the primary mechanism of competition on this site.


1985 ◽  
Vol 15 (5) ◽  
pp. 877-880 ◽  
Author(s):  
L. R. Auchmoody

When fertilizers increase radial growth rates, they also increase the diameter of trees that will be used to compute future basal area responses. If the mean basal area growth per tree is computed for fertilized trees that are larger than the unfertilized trees, the length of time that fertilizers directly affect growth can be overestimated. In this paper, a model that describes mean basal area responses per tree over time as a function of direct nutrient effects and indirect tree-size effects is suggested. Application of the model to a uniform field fertilization experiment shows that after the 1st year, some or all of the average basal area response of individual trees is due to the difference in size between fertilized and unfertilized trees. To evaluate direct fertilizer responses properly, mean basal area growth per tree must be adjusted for the unequal size of fertilized and unfertilized trees.


2007 ◽  
Vol 9 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Hong-gang Sun ◽  
Jian-guo Zhang ◽  
Ai-guo Duan ◽  
Cai-yun He

Sign in / Sign up

Export Citation Format

Share Document