Application of an adverse outcome pathway-based in vitro testing battery for neurotoxicity evaluation

2021 ◽  
Vol 350 ◽  
pp. S51
Author(s):  
K. Koch ◽  
M. Elgamal ◽  
S. Masjosthusmann ◽  
I. Lauria ◽  
R Hartmann ◽  
...  
2019 ◽  
Vol 85 ◽  
pp. 307-319 ◽  
Author(s):  
Daniel Lozano-Ojalvo ◽  
Sara Benedé ◽  
Celia M. Antunes ◽  
Simona L. Bavaro ◽  
Grégory Bouchaud ◽  
...  

2019 ◽  
Vol 127 (9) ◽  
pp. 095001 ◽  
Author(s):  
Pamela D. Noyes ◽  
Katie Paul Friedman ◽  
Patience Browne ◽  
Jonathan T. Haselman ◽  
Mary E. Gilbert ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Maud Weiss ◽  
Jiahui Fan ◽  
Mickaël Claudel ◽  
Luc Lebeau ◽  
Françoise Pons ◽  
...  

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Luigi Margiotta-Casaluci ◽  
Stewart F. Owen ◽  
Belinda Huerta ◽  
Sara Rodríguez-Mozaz ◽  
Subramanian Kugathas ◽  
...  

Abstract The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-specific uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.


2021 ◽  
Vol 3 ◽  
Author(s):  
Penny Nymark ◽  
Hanna L. Karlsson ◽  
Sabina Halappanavar ◽  
Ulla Vogel

Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.


2017 ◽  
Vol 280 ◽  
pp. S254
Author(s):  
Robim M. Rodrigues ◽  
Laxmikanth Kollipara ◽  
Umesh Chaudhari ◽  
Agapios Sachinidis ◽  
René P. Zahedi ◽  
...  

2020 ◽  
Vol 26 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Monica Kam Draskau ◽  
Cassy M Spiller ◽  
Julie Boberg ◽  
Josephine Bowles ◽  
Terje Svingen

Abstract An adverse outcome pathway (AOP) is a simplified description of the sequence of mechanistic events that lead to a particular toxicological effect, from initial trigger to adverse outcome. Although designed to inform regulatory risk assessors, the AOP framework also provides a platform for innovative collaborations between experts from relevant research fields and the regulatory community. The underpinning for any AOP is basic knowledge about molecular and developmental processes; such knowledge can only be attained by solid bioscientific research. Starting with this fundamental knowledge, the objective is to devise novel testing strategies that focus on key events in a causative pathway. It is anticipated that such a knowledge-based approach will ultimately alleviate many of the burdens associated with classical chemical testing strategies that typically involve large-scale animal toxicity regimens. This hails from the notion that a solid understanding of the underlying mechanisms will allow the development and use of alternative test methods, including both in vitro and in silico approaches. This review is specifically targeted at professionals working in bioscientific fields, such as developmental and reproductive biology, and aims to (i) inform on the existence of the AOP framework and (ii) encourage new cross-disciplinary collaborations. It is hoped that fundamental biological knowledge can thus be better exploited for applied purposes: firstly, an improved understanding of how our perpetual exposure to environmental chemicals is causing human reproductive disease and, secondly, new approaches to screen for harmful chemicals more efficiently. This is not an instructional manual on how to create AOPs; rather, we discuss how to harness fundamental knowledge from the biosciences to assist regulatory toxicologists in their efforts to protect humans against chemicals that harm human reproductive development and function.


2020 ◽  
Vol 14 ◽  
pp. 100123 ◽  
Author(s):  
Florentina Troger ◽  
Johannes Delp ◽  
Melina Funke ◽  
Wanda van der Stel ◽  
Claire Colas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document