scholarly journals Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles

2021 ◽  
Vol 3 ◽  
Author(s):  
Penny Nymark ◽  
Hanna L. Karlsson ◽  
Sabina Halappanavar ◽  
Ulla Vogel

Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.

2001 ◽  
Vol 36 (2) ◽  
pp. 319-330 ◽  
Author(s):  
Mark Servos ◽  
Don Bennie ◽  
Kent Burnison ◽  
Philippa Cureton ◽  
Nicol Davidson ◽  
...  

Abstract A number of biological responses and multigenerational effects, mediated through the disruption of endocrine systems, have been observed in biota exposed to relatively low concentrations of environmental contaminants. These types of responses need to be considered within a weight of evidence approach in our risk assessment and risk management frameworks. However, including endocrine responses in an environmental risk assessment introduces a number of uncertainties that must be considered. A risk assessment of nonylphenol and nonylphenol polyethoxylates (NP/NPE) is used as a case study to demonstrate the sources and magnitude of some of the uncertainties associated with using endocrine disruption as an assessment endpoint. Even with this relatively well studied group of substances, there are substantial knowledge gaps which contribute to the overall uncertainties, limiting the interpretation within the risk assessment. The uncertainty of extrapolating from in vitro or biochemical responses to higher levels of organization or across species is not well understood. The endocrine system is very complex and chemicals can interact or interfere with the normal function of endocrine systems in a number of ways (e.g., receptors, hormones) which may or may not result in an adverse responses in the whole organism. Using endocrine responses can lead to different conclusions than traditional endpoints due to a variety of factors, such as differences in relative potencies of chemicals for specific endpoints (e.g., receptor binding versus chronic toxicity). The uncertainties can also be considerably larger and the desirability of using endocrine endpoints should be carefully evaluated. Endocrine disruption is a mode of action and not a functional endpoint and this needs to be considered carefully in the problem formulation stage and the interpretation of the weight of evidence.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Maud Weiss ◽  
Jiahui Fan ◽  
Mickaël Claudel ◽  
Luc Lebeau ◽  
Françoise Pons ◽  
...  

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Luigi Margiotta-Casaluci ◽  
Stewart F. Owen ◽  
Belinda Huerta ◽  
Sara Rodríguez-Mozaz ◽  
Subramanian Kugathas ◽  
...  

Abstract The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-specific uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.


2018 ◽  
Vol 29 (1-2) ◽  
pp. 190-204 ◽  
Author(s):  
Holly M. Mortensen ◽  
John Chamberlin ◽  
Bonnie Joubert ◽  
Michelle Angrish ◽  
Nisha Sipes ◽  
...  

2021 ◽  
Vol 350 ◽  
pp. S51
Author(s):  
K. Koch ◽  
M. Elgamal ◽  
S. Masjosthusmann ◽  
I. Lauria ◽  
R Hartmann ◽  
...  

Author(s):  
Emanuele Gasparotti ◽  
Margherita Cioffi ◽  
Vincenzo Positano ◽  
Emanuele Vignali ◽  
Benigno Marco Fanni ◽  
...  

Cardiovascular diseases (CVD) are disorders of the heart and blood vessels and represent 31% of all global deaths. In the contest of CVD, the use of animal experiments has been a contentious subject for many years. In recent years, in vitro and in silico models and methods have been proposed according to the 3Rs statement. However, an exhaustive report regarding the state of art in terms of in vitro and in silico experiments has not been reported yet. This work is focused on providing a collection of non-animal models and methods in use for basic and applied CVD research. The standardized descriptions of such studies will ultimately feed into EURL ECVAM database on alternative methods. Two are the research main phases. Firstly, the exclusion/ inclusion criteria and the list of relevant information resources of the research have been defined. The second phase regards the search, selection and detailed description of the literature papers by analysing records on Scopus and Pubmed databases.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 29-42 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME recently conducted a research project sponsored by Defra on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for using alternative methods (both in vitro and in silico) for environmental (aquatic) toxicity testing. The manuscript reviews tests based on fish cells and cell lines, fish embryos, lower organisms, and the many expert systems and QSARs for aquatic toxicity testing. Ways in which reduction and refinement measures can be used are also discussed, including the Upper Threshold Concentration — Step Down (UTC) approach, which has recently been retrospectively validated by ECVAM and subsequently endorsed by the ECVAM Scientific Advisory Committee (ESAC). It is hoped that the application of this approach could reduce the number of fish used in acute toxicity studies by around 65–70%. Decision-tree style integrated testing strategies are also proposed for acute aquatic toxicity and chronic toxicity (including bioaccumulation), followed by a number of recommendations for the future facilitation of aquatic toxicity testing with respect to environmental risk assessment.


Sign in / Sign up

Export Citation Format

Share Document