Applications of aqueous two-phase partition to isolation of membranes from plants: A periodic NADH oxidase activity as a marker for right side-out plasma membrane vesicles

2000 ◽  
Vol 743 (1-2) ◽  
pp. 369-376 ◽  
Author(s):  
D.James Morré ◽  
Dorothy M Morré
1992 ◽  
Vol 284 (3) ◽  
pp. 625-628 ◽  
Author(s):  
M Bruno ◽  
A O Brightman ◽  
J Lawrence ◽  
D Werderitsh ◽  
D M Morré ◽  
...  

Plasma membranes of rat liver isolated by aqueous two-phase partition exhibited basal levels of NADH oxidase activity that were increased approx. 2-fold by addition of hormones and growth factors to which liver cells were known to respond. In contrast, hepatoma plasma membranes demonstrated an intrinsically increased level of NADH oxidase, which was not stimulated further by addition of growth factors. The results suggest that the NADH oxidase of the hepatoma plasma membrane is no longer correctly coupled to hormone and growth-factor receptors. This biochemical defect may parallel the loss of growth control that is characteristic of neoplastic transformation in hepatocarcinogenesis and other transformation systems.


1994 ◽  
Vol 49 (7-8) ◽  
pp. 447-452 ◽  
Author(s):  
Sabine Lüthje ◽  
José A. Gonzaléz-Reyes ◽  
Placido Navas ◽  
Olaf Döring ◽  
Michael Böttger

Modulation of plasma membrane-bound NADH:hexacyanoferrate III oxidoreductase activities by dicumarol and warfarin was investigated with plasma membrane vesicles of Zea mays L. (cv. Sil Anjou 18) roots, prepared by aqueous two phase partitioning. Vesicles were about 65% right-side out orientated as demonstrated by enzyme latency of vanadate sensitive ATPase activity. Dicumarol or warfarin, respectively, inhibited NADH:hexacyanoferrate III oxidoreductase activity in a concentration-dependent manner and inhibition could be reversed partially by addition of quinones


1993 ◽  
Vol 292 (3) ◽  
pp. 743-748 ◽  
Author(s):  
T G Hammond ◽  
R R Majewski ◽  
J J Onorato ◽  
P C Brazy ◽  
D J Morré

The aqueous two-phase partition technique is a simple, rapid and inexpensive method for the fractionation of membrane preparations. Aqueous two-phase partitioning separates according to surface properties such as charge and hydrophobicity, making it complementary to established centrifugation techniques, which separate on the basis of density. Although aqueous two-phase partitioning has been successfully applied to animal tissues, there are limited data on the functional properties of the isolated membranes. We have applied the aqueous two-phase partition technique to rat renal brush-border membrane vesicles and sheets. Our aim was to remove organelle contamination while maintaining the functional properties of the membranes. Evidence from marker enzyme analysis and electron microscopy supports the conclusion that renal brush-border membranes are fractionated separate from the mitochondria and endoplasmic reticulum. This separation procedure did not alter the Na(+)-dependent transport of brush-border membrane vesicles. Na(+)-D-glucose symporter and Na(+)-H+ antiporter activity in the fractionated preparation increased to the same extent as did the enrichment of enzyme markers for brush-border membranes.


Sign in / Sign up

Export Citation Format

Share Document