X-ray bone fracture subtraction using geodesic active contour and mathematical morphology operations

2003 ◽  
Vol 1256 ◽  
pp. 226-231 ◽  
Author(s):  
Y Jiang
Author(s):  
Divya K, Veena ◽  
Anand Jatti ◽  
M. J. Vidya ◽  
Revan Joshi ◽  
Srikar Gade

Panoramic dental x-ray, a two-dimensional dental x-ray that captures the entire mouth in a single image, is used for the initial screening of various dental anomalies. One such is Jaw bone cyst, which, if not identified earlier, may lead to complications which in turn may lead to disfigurement and loss of function. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region and extracting related features to assist clinical experts in further analysis. Objective: To develop an application of active contour model, known as Geodesic Active Contour, to generate Panoramic Dental X-Ray, a single 2 D X-ray image of the entire mouth highlighting the dental specifications. Methods: The process involves the image conversion from the OPG image into grayscale, Contrast adjustment using intensity level slicing, edge smoothing, segmentation, and cyst segmentation by Morphological Geodesic Active Contour to obtain the results. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region. It is crucial in extracting related features to assist clinical experts in further analysis. Conclusion: When efficient and accurate diagnostic methods exist, the treatment and cure become easy and concrete. Based on the morphological snake and level sets, it aims at identifying the boundary by minimizing the energy. Results: Using the structural similarity index, an accuracy of 97.6% is obtained. Advances in Knowledge: This process is advantageous as it is simpler, faster, and does not suffer from instability problems. Morphological methods improve their functional gradient descent by improving stability and speed. The hysteresis algorithm exhibits better edge detection performance, a significant reduction in computational time and scalability.


The crack can occur in any bone ofour body. Broken bone is a bone condition that endured a breakdown of bone trustworthiness. The Fracture can't recognize effortlessly by the bare eye, so it is found in the x-beam images. The motivation behind this task is to find the precise territory where the bone fracture happens utilizing X-Ray Bone Fracture Detection by Canny Edge Detection Method. Shrewd Edge Detection technique is an ideal edge identification calculation on deciding the finish of a line with alterable limit and less error rate. The reproduction results have indicated how canny edge detection can help decide area of breaks in x-beam images. In the base paper, the cracked bit is chosen physically to defeat this downside, the proposed technique identify the bone fracture consequently and furthermore it quantifies the parameter like length of the crack, profundity of the fracture and the situation of the crack as for even and vertical pivot. The outcome demonstrates that the proposed technique for crack identification is better. The outcomes demonstrate that calculation is 91% exact and effective


Sign in / Sign up

Export Citation Format

Share Document