SAT-385-Production and characterization of human liver extracellular matrix hydrogels for in vitro culture of distinct human primary liver cell populations

2019 ◽  
Vol 70 (1) ◽  
pp. e803-e804
Author(s):  
Niki Alevra Sarika ◽  
Valéry L. Payen ◽  
Maximilien Fleron ◽  
Véronique Préat ◽  
Gabriel Mazzucchelli ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1357
Author(s):  
Niki Alevra Sarika ◽  
Valéry L. Payen ◽  
Maximilien Fléron ◽  
Joachim Ravau ◽  
Davide Brusa ◽  
...  

The lack of robust methods to preserve, purify and in vitro maintain the phenotype of the human liver’s highly specialized parenchymal and non-parenchymal cell types importantly hampers their exploitation for the development of research and clinical applications. There is in this regard a growing interest in the use of tissue-specific extracellular matrix (ECM) to provide cells with an in vitro environment that more closely resembles that of the native tissue. In the present study, we have developed a method that allows for the isolation and downstream application of the human liver’s main cell types from cryopreserved material. We also isolated and solubilized human liver ECM (HL-ECM), analyzed its peptidomic and proteomic composition by mass spectrometry and evaluated its interest for the culture of distinct primary human liver cells. Our analysis of the HL-ECM revealed proteomic diversity, type 1 collagen abundance and partial loss of integrity following solubilization. Solubilized HL-ECM was evaluated either as a coating or as a medium supplement for the culture of human primary hepatocytes, hepatic stellate cells and liver sinusoidal endothelial cells. Whereas the solubilized HL-ECM was suitable for cell culture, its impact on the phenotype and/or functionality of the human liver cells was limited. Our study provides a first detailed characterization of solubilized HL-ECM and a first report of its influence on the culture of distinct human primary liver cells.


2011 ◽  
Vol 49 (01) ◽  
Author(s):  
SA Hoffmann ◽  
M Lübberstedt ◽  
U Müller-Vieira ◽  
D Knobeloch ◽  
A Nüssler ◽  
...  

2006 ◽  
Vol 32 (5) ◽  
pp. 649-657 ◽  
Author(s):  
Christiano Bittencourt Machado ◽  
Wagner Coelho de Albuquerque Pereira ◽  
Mahmoud Meziri ◽  
Pascal Laugier

2014 ◽  
Vol 147 ◽  
pp. 7-17 ◽  
Author(s):  
Marta Eide ◽  
Marte Rusten ◽  
Rune Male ◽  
Knut Helge Midtbø Jensen ◽  
Anders Goksøyr

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 355 ◽  
Author(s):  
Deok-Kyu Hwang ◽  
Ju-Hyun Kim ◽  
Yongho Shin ◽  
Won-Gu Choi ◽  
Sunjoo Kim ◽  
...  

Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to predict its pharmacokinetics. Catalposide was metabolized to catalposide sulfate (M1), 4-hydroxybenzoic acid (M2), 4-hydroxybenzoic acid glucuronide (M3), and catalposide glucuronide (M4) by human hepatocytes, liver S9 fractions, and intestinal microsomes. M1 formation from catalposide was catalyzed by sulfotransferases (SULTs) 1C4, SULT1A1*1, SULT1A1*2, and SULT1E1. Catalposide glucuronidation to M4 was catalyzed by gastrointestine-specific UDP-glucuronosyltransferases (UGTs) 1A8 and UGT1A10; M4 was not detected after incubation of catalposide with human liver preparations. Hydrolysis of catalposide to M2 was catalyzed by carboxylesterases (CESs) 1 and 2, and M2 was further metabolized to M3 by UGT1A6 and UGT1A9 enzymes. Catalposide was also metabolized in extrahepatic tissues; genetic polymorphisms of the carboxylesterase (CES), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for catalposide metabolism may cause inter-individual variability in terms of catalposide pharmacokinetics.


2021 ◽  
Author(s):  
Tallulah S Andrews ◽  
Jawairia Atif ◽  
Jeff C Liu ◽  
Catia T Perciani ◽  
Xue-Zhong Ma ◽  
...  

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at single-cell resolution, revealed the presence of rare subtypes of hepatic stellate cells previously only seen in disease, and detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and NK cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell-types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte and stellate cell populations by an independent spatial transcriptomics dataset and immunohistochemistry. Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Materialia ◽  
2018 ◽  
Vol 4 ◽  
pp. 518-528 ◽  
Author(s):  
Ronald Bual ◽  
Haruna Kimura ◽  
Yasuhiro Ikegami ◽  
Nana Shirakigawa ◽  
Hiroyuki Ijima

Sign in / Sign up

Export Citation Format

Share Document