scholarly journals Three-dimensional reconstruction of coronary arteriole plexus imaging using real-time contrast echocardiography

2002 ◽  
Vol 39 ◽  
pp. 344
Author(s):  
Tsutomu Toshida ◽  
Tomoko Kutsuyama ◽  
Jyuri Okazaki ◽  
Hideo Hirayama ◽  
Kentaro Ohtani ◽  
...  
2003 ◽  
Vol 13 (5) ◽  
pp. 451-460 ◽  
Author(s):  
Thomas Sangild Sørensen ◽  
Erik Morre Pedersen ◽  
Ole Kromann Hansen ◽  
Keld Sørensen

In recent years, three-dimensional imaging has provided new opportunities for visualizing congenital cardiac malformations. We present the initial clinical experience using a recently implemented system, which employs some of new interactive, real-time, techniques. We show how three-dimensional rendering based on magnetic resonance imaging can provide detailed spatial information on both intrinsic and extrinsic cardiac relations, and hence how a virtual examination can potentially provide new means to a better understanding of complex congenital cardiac malformations.


2011 ◽  
Vol 22 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Karolina M. G. Bilska ◽  
Claudia M. J. Kehrens ◽  
Gillian Riley ◽  
Robert H. Anderson ◽  
Jan Marek

AbstractReal-time three-dimensional echocardiography can surpass simple cross-sectional echocardiography in providing precise details of cardiac lesions. For the purpose of optimising treatment, we describe our findings with real-time three-dimensional echocardiography when interrogating different types of communications permitting interatrial shunting. A three-dimensional reconstruction of defects within the oval fossa enabled reliable identification of location, size, and integrity of surrounding rims. In the superior sinus venosus defect associated with partially anomalous pulmonary venous drainage, three-dimensional reconstruction helped to provide a better understanding of the relationship between the interatrial communication, the orifice of the superior caval vein, and the connections of the right upper pulmonary vein. In the defect opening infero-posteriorly within the oval fossa, three-dimensional reconstruction helped to avoid the risk of potentially inappropriate closure of the defect by suturing the hyperplastic Eustachian valve to the atrial wall, which could have diverted the inferior caval venous return into the left atrium, or obstructed the caval venous orifice. In the coronary sinus defect, three-dimensional echocardiography provided a ‘face to face’ view of the entire coronary sinus roof, showing a circular defect communicating with the cavity of the left atrium. Acquisition of the full-volume data sets took less than 2 minutes for the patients having defects within the oval fossa, and no more than 3 minutes for the patients with the sinus venosus and coronary sinus defects. Post-processing for the defects in the oval fossa took from 5 to 8 minutes, and from 12 to 16 minutes for the more complicated defects.ConclusionCross-sectional two-dimensional echocardiography can establish correct diagnosis in all types of atrial communications; however, real-time three-dimensional reconstruction provides additional value to the surgeon and interventionist for better understanding of spatial intracardiac morphology.


2013 ◽  
Vol 183 (3) ◽  
pp. 329-341 ◽  
Author(s):  
Giovanni Cardone ◽  
Xiaodong Yan ◽  
Robert S. Sinkovits ◽  
Jinghua Tang ◽  
Timothy S. Baker

2008 ◽  
Vol 20 (04) ◽  
pp. 205-218 ◽  
Author(s):  
Jyh-Fa Lee ◽  
Ming-Shium Hsieh ◽  
Chih-Wei Kuo ◽  
Ming-Dar Tsai ◽  
Ming Ma

This paper describes a three-dimensional reconstruction method to provide real-time visual responses for volume (constituted by tomographic slices) based surgery simulations. The proposed system uses dynamical data structures to record tissue triangles obtained from 3D reconstruction computation. Each tissue triangle in the structures can be modified or every structure can be deleted or allocated independently. Moreover, triangle reconstruction is optimized by only deleting or adding vertices from manipulated voxels that are classified as erosion (in which the voxels are changed from tissue to null) or generation (the voxels are changed from null to tissue). Therefore, by manipulating these structures, 3D reconstruction can be locally implemented for only manipulated voxels to achieve the highest efficiency without reconstructing tissue surfaces in the whole volume as general methods do. Three surgery simulation examples demonstrate that the proposed method can provide time-critical visual responses even under other time-consuming computations such as volume manipulations and haptic interactions.


Sign in / Sign up

Export Citation Format

Share Document