Hemodynamic and Inotropic Effects of Endothelin Antagonists

1998 ◽  
Vol 31 (2) ◽  
pp. 487A
Author(s):  
M Beyer
1998 ◽  
Vol 31 ◽  
pp. 487 ◽  
Author(s):  
Martin E. Beyer ◽  
Tobias Hövelborn ◽  
Günther Slesak ◽  
Hans Martin Hoffmeister

2003 ◽  
Vol 2 (1) ◽  
pp. 2
Author(s):  
D VONLEWINSKI ◽  
S BRUNS ◽  
E BISPING ◽  
B PIESKE

Circulation ◽  
1997 ◽  
Vol 96 (8) ◽  
pp. 2675-2682 ◽  
Author(s):  
Benedikt Preckel ◽  
Georg Kojda ◽  
Wolfgang Schlack ◽  
Dirk Ebel ◽  
Karin Kottenberg ◽  
...  

Author(s):  
Takuya Nishikawa ◽  
Kazunori Uemura ◽  
Yohsuke Hayama ◽  
Toru Kawada ◽  
Keita Saku ◽  
...  

AbstractBeta-blockers are well known to reduce myocardial oxygen consumption (MVO2) and improve the prognosis of heart failure (HF) patients. However, its negative chronotropic and inotropic effects limit their use in the acute phase of HF due to the risk of circulatory collapse. In this study, as a first step for a safe β-blocker administration strategy, we aimed to develop and evaluate the feasibility of an automated β-blocker administration system. We developed a system to monitor arterial pressure (AP), left atrial pressure (PLA), right atrial pressure, and cardiac output. Using negative feedback of hemodynamics, the system controls AP and PLA by administering landiolol (an ultra-short-acting β-blocker), dextran, and furosemide. We applied the system for 60 min to 6 mongrel dogs with rapid pacing-induced HF. In all dogs, the system automatically adjusted the doses of the drugs. Mean AP and mean PLA were controlled within the acceptable ranges (AP within 5 mmHg below target; PLA within 2 mmHg above target) more than 95% of the time. Median absolute performance error was small for AP [median (interquartile range), 3.1% (2.2–3.8)] and PLA [3.6% (2.2–5.7)]. The system decreased MVO2 and PLA significantly. We demonstrated the feasibility of an automated β-blocker administration system in a canine model of acute HF. The system controlled AP and PLA to avoid circulatory collapse, and reduced MVO2 significantly. As the system can help the management of patients with HF, further validations in larger samples and development for clinical applications are warranted.


1987 ◽  
Author(s):  
W Haarmann ◽  
H Weisenberger

Compounds inhibiting platelet function by acting on platelet cAMP metabolism usually also have effects on the circulatory system, i.e. they decrease systemic blood pressure (bp) and are positive inotropic. For several compounds selected because of their distinct platelet inhibitory effects, the influence on these parameters in animals and on the cAMP metabolism in human platelets was determined.Inotropic effects and bp were measured via an indwelling catheter in anestetised cats after i.v. application of the test compounds. The inhibition of platelet PDEs was measured in freeze-thaw homogenates of human platelets using 3H-cAMP as substrate. Intraplatelet cAMP changes were measured by prelabelling the ATP pool with 3H-adenine and isolation of 3H-cAMP. Linear regression analysis of the drug concentrations causing a doubling of intraplatelet cAMP levis and the % difference in bp or the % difference in dp/dt, resp., by i.v. application of 0.3 mg/kg test compound yielded the following results:cAMP vs % diff. bp : r=0.02, N=18cAMP vs % diff. dp/dt: r = 0.02 , N = 15In contrast to a good correlation between intraplatelet cAMP levels and inhibition of platelet function tests, no obvious relationship was seen between cAMP and decrease in bp and positive initropic effects. It is not known whether the lack of correlation could be due to a different drug access to platelets and the bp regulatory system.A biochemical parameter, i.e. intraplatelet cAMP increase by inhibition of PDEs correlates reasonably well with the inhibition of platelet function tests. This parameter is not useful, however, to predict the effects on the heart and the circulatory system.


1989 ◽  
Vol 257 (4) ◽  
pp. H1082-H1087 ◽  
Author(s):  
D. F. Rigel ◽  
I. L. Grupp ◽  
A. Balasubramaniam ◽  
G. Grupp

Contractile effects of the cardiac neuropeptides vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and neurotensin (NT) were compared with those of l-isoproterenol (ISO) in isolated canine atrial and ventricular trabeculae muscles stimulated to contract at 1 Hz. In ventricular muscles, ISO, VIP, and PHI augmented developed isometric force by approximately 100%. VIP and PHI were three times and 1/10, respectively, as potent as ISO. VIP also exhibited positive inotropic effects in atrial trabeculae. The contractile responses to VIP were unchanged after beta-adrenergic blockade with nadolol at a concentration (10 microM) that shifted the ISO dose-response curve two to three orders of magnitude to the right. In atrial and ventricular trabeculae, NPY (1 microM) attenuated contractile force by 36 +/- 8 and 30 +/- 4%, respectively. Each peptide also caused comparable increases or decreases in the rate of development of force and the rate of relaxation. CGRP and NT caused no significant changes in developed force in either atrial or ventricular muscles in concentrations up to 1 microM. Our results indicate a potential positive inotropic action of endogenous VIP and PHI and a cardiodepressant effect of endogenous NPY in the canine heart.


Sign in / Sign up

Export Citation Format

Share Document