scholarly journals Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms

1996 ◽  
Vol 24 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Manish I. Patel ◽  
James Melrose ◽  
Peter Ghosh ◽  
Michael Appleberg
2008 ◽  
Vol 148 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Oscar H. Grandas ◽  
Deidra J.H. Mountain ◽  
Stacy S. Kirkpatrick ◽  
Vivek S. Rudrapatna ◽  
David C. Cassada ◽  
...  

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Anna Zampetaki ◽  
Xiaoke Yin ◽  
Ursula Mayr ◽  
Renata Gomes ◽  
Sarah Langley ◽  
...  

Rationale: Extracellular matrix (ECM) remodeling is a key function of vascular smooth muscle cells (SMCs). MicroRNAs (miRNAs), in particular the miR-29 family and miR-195, have been implicated in the control of ECM secretion. Objective: To perform a proteomics comparison of miRNA effects on ECM production by vascular SMCs. Methods and Results: Murine SMCs were transfected with miRNA mimics and antimiRs of miR-29b and miR-195, and their conditioned medium was analyzed by mass spectrometry. Both miRNAs targeted a cadre of ECM proteins, including proteoglycans, collagens, proteases, elastin and proteins associated with elastic microfibrils, albeit miR-29 showed a stronger effect. The proteomics findings were subsequently validated at the transcription level using quantitative polymerase chain reaction. Similar to miR-29, in vivo inhibition of miR-195 by intraperitoneal injection of cholesterol bound antagomiRs led to significant alterations of elastin expression in murine aortas. Since elastin degradation is a key event in aortic aneurysm formation, we investigated miR-195 expression in patients. In human aortic aneurysmal tissue, miR-195 expression was reduced compared to non-aneurysmal tissue. In plasma, a comparison between male patients with abdominal aortic aneurysms and controls matched for diabetes and hypertension returned a panel of five highly correlated miRNAs: miR-195, miR-125b, miR-148a, miR-20a and miR-340 showed significant inverse associations with the presence of abdominal aortic aneurysms and aortic diameter, with miR-195 dominating in terms of association strength. Conclusions: Using proteomic analysis, we compared the effect of miR-29 and miR-195 on ECM secretion by vascular SMCs and identified novel miRNA targets. Findings in patients support an important role for miR-195 in vascular remodeling as evidenced by reduced miR-195 expression in human aneurysmal tissue and an inverse correlation between plasma miR-195 levels and aortic diameter.


2018 ◽  
Vol 25 (1_suppl) ◽  
pp. 42-50 ◽  
Author(s):  
Anna Chiarini ◽  
Francesco Onorati ◽  
Maddalena Marconi ◽  
Alessandra Pasquali ◽  
Cristina Patuzzo ◽  
...  

Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design. Methods Media layer samples taken from seven carefully selected SNSTAAs and seven reference patients (controls) were investigated via quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, quantitative histology, and immunohistochemistry/immunofluorescence. Results In SNSTAAs media, aortic smooth muscle cells numbers were halved due to an apoptotic process coupled with a negligible cell proliferation. Cystathionine γ-lyase was diffusely up-regulated. Surviving aortic smooth muscle cells exhibited diverging phenotypes: in inner- and outer-media contractile cells prevailed, having higher contents of smooth-muscle-α-actin holoprotein (45-kDa) and of caspase-3-cleaved smooth-muscle-α-actin 25-kDa fragments; in mid-media, aortic smooth muscle cells exhibited a synthetic/secretor phenotype, down-regulating vimentin, but up-regulating glial fibrillary acidic protein, trans-Golgi network 46 protein, Jagged1 (172-kDa) holoprotein, and Jagged1’s receptor Notch1. Extracellular soluble Jagged1 (42-kDa) fragments accumulated. Conclusions In SNSTAAs, there is a relentless aortic smooth muscle cells attrition caused by the up-regulated cystathionine γ-lyase. In mid-media, synthetic/secretor aortic smooth muscle cells intensify Jagged1/NOTCH1 signalling in the attempt to counterbalance the weakened aortic wall, due to aortic smooth muscle cells net loss and mechanical stress. Synthetic/secretor aortic smooth muscle cells are apoptosis-prone, and the accruing thrombin-cleaved Jagged1 fragments counteract the otherwise useful effects of Jagged1/NOTCH1 signalling, thus hampering tissue homeostasis/remodelling, and aortic smooth muscle cells adhesion, differentiation, and migration.


2008 ◽  
Vol 87 (4) ◽  
pp. 347-356 ◽  
Author(s):  
Sara Gredmark-Russ ◽  
Mensur Dzabic ◽  
Afsar Rahbar ◽  
Anders Wanhainen ◽  
Martin Björck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document