vascular smcs
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Dieniffer Peixoto-Neves ◽  
Praghalathan Kanthakumar ◽  
Jeremiah M Afolabi ◽  
Hitesh Soni ◽  
Randal K Buddington ◽  
...  

KV7, the voltage-gated potassium channels encoded by KCNQ genes, mediate heterogeneous vascular responses in adult rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of the renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole-cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter the mean arterial pressure (MAP), renal blood flow (RBF), and renal vascular resistance (RVR) in the pigs. An approximately 20 mmHg reduction in the MAP evoked effective autoregulation of the RBF, which HMR inhibited. We conclude that 1) The expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.


2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Margarida Lorigo ◽  
Nelson Oliveira ◽  
Elisa Cairrao

Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 804
Author(s):  
Nima Abbasian

Vascular calcification (VC) is associated with aging, cardiovascular and renal diseases and results in poor morbidity and increased mortality. VC occurs in patients with chronic kidney disease (CKD), a condition that is associated with high serum phosphate (Pi) and severe cardiovascular consequences. High serum Pi level is related to some pathologies which affect the behaviour of vascular cells, including platelets, endothelial cells (ECs) and smooth muscle cells (SMCs), and plays a central role in promoting VC. VC is a complex, active and cell-mediated process involving the transdifferentiation of vascular SMCs to a bone-like phenotype, systemic inflammation, decreased anti-calcific events (loss of calcification inhibitors), loss in SMC lineage markers and enhanced pro-calcific microRNAs (miRs), an increased intracellular calcium level, apoptosis, aberrant DNA damage response (DDR) and senescence of vascular SMCs. This review gives a brief overview of the current knowledge of VC mechanisms with a particular focus on Pi-induced changes in the vascular wall important in promoting calcification. In addition to reviewing the main findings, this review also sheds light on directions for future research in this area and discusses emerging pathways such as Pi-regulated intracellular calcium signaling, epigenetics, oxidative DNA damage and senescence-mediated mechanisms that may play critical, yet to be explored, regulatory and druggable roles in limiting VC.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chaim Glück ◽  
Kim David Ferrari ◽  
Noemi Binini ◽  
Annika Keller ◽  
Aiman S Saab ◽  
...  

Pericytes have been implicated in various neuropathologies, yet, little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26 mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1347
Author(s):  
Nadim E. Hachem ◽  
Luisa Humpfle ◽  
Peter Simon ◽  
Miriam Kaese ◽  
Birgit Weinhold ◽  
...  

In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs.


2021 ◽  
Vol 22 (2) ◽  
pp. 855
Author(s):  
Marie Piollet ◽  
Adrian Sturza ◽  
Stéphanie Chadet ◽  
Claudie Gabillard-Lefort ◽  
Lauriane Benoist ◽  
...  

Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.


2021 ◽  
Vol 248 (1) ◽  
pp. 17-30
Author(s):  
Tian Shuang ◽  
Ming Fu ◽  
Guangdong Yang ◽  
Ying Huang ◽  
Zhongming Qian ◽  
...  

Both estrogen and hydrogen sulfide (H2S) inhibit the proliferation of vascular smooth muscle cells (SMCs) and development of atherosclerosis. In the absence of endogenous H2S as occurred in CSE-knockout (KO) mouse, however, estrogen stimulates the proliferation of vascular SMCs. The underlying mechanisms for this seemingly controversial vascular effect of estrogen are unclear. In the present study, we demonstrated that the stimulatory effect of estrogen on the proliferation of CSE-KO SMCs was suppressed by the inhibitor of insulin-like growth factor-1 receptor (IGF-1R) or knockdown of IGF-1R protein expression. Estrogen downregulated the expression of insulin-like growth factor-1 (IGF-1) and IGF-1R in aortic tissues or aortic SMCs isolated from WT and CSE-KO mice. Furthermore, endogenous H2S downregulated IGF-1R, but upregulated estrogen receptor (ER)-α, in aortic tissues or SMCs. ER-α and IGF-1R were co-located in SMCs and co-immunoprecipitated, which was decreased by H2S. Finally, both endogenous and exogenous H2S induced the S-sulfhydration of IGF-1R, but not ER-α, in WT-SMCs and CSE-KO SMCs, which underlies the decreased formation of IGF-1R/ER-α hybrid in the presence of H2S. Thus, the absence of H2S favors the interaction of estrogen with IGF-1R/ER-α hybrid to stimulate SMCs proliferation. The appreciation of a critical role of H2S in preventing estrogen-induced SMCs proliferation will help better understand the regulation of complex vascular effects of estrogen and sex-related cardiovascular diseases.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1956
Author(s):  
Margarida Lorigo ◽  
Nelson Oliveira ◽  
Elisa Cairrao

Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility—a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.


2019 ◽  
Vol 182 ◽  
pp. 110369 ◽  
Author(s):  
Meiling Wen ◽  
Fang Zhou ◽  
Ce Cui ◽  
Yunhui Zhao ◽  
Xiaoyan Yuan

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Haiying Hu ◽  
Guangtai Zhang ◽  
Huanli Hu ◽  
Wenjing Liu ◽  
Jixiang Liu ◽  
...  

Background. Interleukin- (IL-) 18 is a proinflammatory cytokine related to cardiovascular diseases, including hypertension and atherosclerosis. This study is aimed at determining whether IL-18 is related to aortic dissection (AD) and identifying the underlying mechanisms. Methods. IL-18 expression in human aorta samples from AD (n=8) and non-AD (NAD, n=7) patients was measured. In addition, the IL-18, IL-6, interferon- (IFN-) γ, and IL-18-binding protein (IL-18BP) concentrations in plasma samples collected from the NAD and AD patients were detected. The effects of IL-18 on macrophage differentiation and smooth muscle cell (SMC) apoptosis were investigated in vitro. Results. IL-18 expression was significantly increased in the aorta samples from the AD patients compared with those from the NAD patients, especially in the torn section. Aortic IL-18 was mainly derived from macrophages and also partly derived from CD4+ T lymphocytes and vascular SMCs. Plasma IL-18, IFN-γ, and IL-6 levels were significantly higher in the AD group than in the NAD group, and the IL-18 levels were positively correlated with the IFN-γ and IL-6 levels. In addition, plasma IL-18BP and free IL-18 levels were also elevated in the AD group. Linear regression analysis showed that the IL-18 level was independently associated with the presence of AD. In addition, anti-mouse IL-18-neutralizing monoclonal antibodies (anti-IL-18 nAb) inhibited angiotensin II-induced M1 macrophage differentiation and SMC apoptosis in vitro. Conclusion. IL-18 may participate in AD by regulating macrophage differentiation and macrophage-induced SMC apoptosis.


Sign in / Sign up

Export Citation Format

Share Document