Hidden shape derivative in the wave equation with Dirichlet boundary condition

Author(s):  
John Cagnol ◽  
Jean-Paul Zolésio
2003 ◽  
Vol 133 (5) ◽  
pp. 1137-1153 ◽  
Author(s):  
M. A. Jendoubi ◽  
P. Poláčik

We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbounded variable t. In both cases, we consider solutions that are defined and bounded on Ω × (0, ∞) and satisfy a Dirichlet boundary condition on ∂Ω × (0, ∞). We show that, for some nonlinearities, the equations have bounded solutions that do not stabilize to any single function φ: Ω → R, as t → ∞; rather, they approach a continuum of such functions. This happens despite the presence of damping in the equation that forces the t derivative of bounded solutions to converge to 0 as t → ∞. Our results contrast with known stabilization properties of solutions of such equations in the case N = 1.


Author(s):  
V. Komornik

SynopsisWe establish that if Ω is an open square and if P is an arbitrary point of Ω, then the solutions of the wave equation with Dirichlet boundary condition utt − Δu = 0 in R × Ω, u = 0 on R × Γ can remain strictly positive during an arbitrarily large time. In fact stronger results are proved, considering several points of Ω simultaneously and prescribing different, more general, behaviour of the solution at these points.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


2014 ◽  
Vol 66 (5) ◽  
pp. 1110-1142
Author(s):  
Dong Li ◽  
Guixiang Xu ◽  
Xiaoyi Zhang

AbstractWe consider the obstacle problem for the Schrödinger evolution in the exterior of the unit ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the fundamental solution for the linear Dirichlet Schrödinger propagator and give a robust algorithm to prove sharp L1 → L∞ dispersive estimates. We showcase the analysis in dimensions n = 5, 7. As an application, we obtain global well–posedness and scattering for defocusing energy-critical NLS on with Dirichlet boundary condition and radial data in these dimensions.


Sign in / Sign up

Export Citation Format

Share Document