Evaluation of the cytotoxicity of selected systemic and intravitreally dosed drugs in the cultures of human retinal pigment epithelial cell line and of pig primary retinal pigment epithelial cells

2002 ◽  
Vol 16 (2) ◽  
pp. 193-200 ◽  
Author(s):  
M Mannerström ◽  
M Zorn-Kruppa ◽  
H Diehl ◽  
M Engelke ◽  
T Toimela ◽  
...  
2021 ◽  
pp. 153537022097607
Author(s):  
Jing-Xian Wang ◽  
Yuan Yang ◽  
Wen-Ying Li

Retinal pigment epithelial cells are closely associated with the pathogenesis of diabetic retinopathy. The mechanism by which diabetes impacts retinal pigment epithelial cell function is of significant interest. Sirtuins are an important class of proteins that primarily possess nicotinamide adenine dinucleotide-dependent deacetylases activity and involved in various cellular physiological and pathological processes. Here, we aimed to examine the role of sirtuins in the induction of diabetes-associated retinal pigment epithelial cell dysfunction. High glucose and platelet-derived growth factor (PDGF) treatment induced epithelial–mesenchymal transition and the migration of retinal pigment epithelial cells, and decreased sirtuin-3 expression. Sirtuin-3 knockdown using siRNA increased epithelial–mesenchymal transition and migration of retinal pigment epithelial cells. In contrast, sirtuin-3 overexpression attenuated the effects caused by high glucose and PDGF on epithelial–mesenchymal transition and migration of retinal pigment epithelial cells, suggesting that sirtuin-3 deficiency contributed to retinal pigment epithelial cell dysfunction induced by high glucose and PDGF. Mechanistically, sirtuin-3 deficiency induced retinal pigment epithelial cell dysfunction by the overproduction of mitochondrial reactive oxygen species. These results suggest that sirtuin-3 deficiency mediates the migration of retinal pigment epithelial cells, at least partially by increasing mitochondrial oxidative stress, and shed light on the importance of sirtuin-3 and mitochondrial reactive oxygen species as potential targets in diabetic retinopathy therapy.


Author(s):  
Carolina Reis Oliveira ◽  
Mayara Rodrigues Brandão de Paiva ◽  
Marcela Coelho Silva Ribeiro ◽  
Gracielle Ferreira Andrade ◽  
Juliana Lott Carvalho ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Hellinen ◽  
Marja Hagström ◽  
Heidi Knuutila ◽  
Marika Ruponen ◽  
Arto Urtti ◽  
...  

Abstract Melanin pigment has a significant role in ocular pharmacokinetics, because many drugs bind at high extent to melanin in the retinal pigment epithelial cells. Most retinal pigment epithelial cell lines lack pigmentation and, therefore, we re-pigmented human ARPE-19 cells to generate a pigmented cell model. Melanosomes from porcine retinal pigment epithelium were isolated and co-incubated with ARPE-19 cells that spontaneously phagocytosed the melanosomes. Internalized melanosomes were functionally integrated to the cellular system as evidenced by correct translocation of cellular Rab27a protein to the melanosomal membranes. The pigmentation was retained during cell cultivation and the level of pigmentation can be controlled by altering the amount of administered melanosomes. We used these cells to study melanosomal uptake of six drugs. The uptake was negligible with low melanin-binders (methotrexate, diclofenac) whereas most of the high melanin-binders (propranolol, chloroquine) were extensively taken up by the melanosomes. This cell line can be used to model pigmentation of the retinal pigment epithelium, while maintaining the beneficial cell line characteristics, such as fast generation of cultures, low cost, long-term maintenance and good reproducibility. The model enables studies at normal and decreased levels of pigmentation to model different retinal conditions.


Sign in / Sign up

Export Citation Format

Share Document