Mandibular incisors, alveolar bone, and symphysis afterorthodontic treatment. A retrospective study

1996 ◽  
Vol 110 (3) ◽  
pp. 239-246 ◽  
Author(s):  
Heinrich Wehrbein ◽  
Waltraud Bauer ◽  
Peter Diedrich
2016 ◽  
Vol 21 (2) ◽  
pp. 95-101 ◽  
Author(s):  
João Paulo Schwartz ◽  
Taisa Boamorte Raveli ◽  
Humberto Osvaldo Schwartz-Filho ◽  
Dirceu Barnabé Raveli

ABSTRACT Objective: This study evaluated alveolar bone loss around mandibular incisors, induced by the Herbst appliance. Methods: The sample consisted of 23 patients (11 men, 12 women; mean age of 15.76 ± 1.75 years), Class II, Division 1 malocclusion, treated with the Herbst appliance. CBCT scans were obtained before treatment (T0) and after Herbst treatment (T1). Vertical alveolar bone level and alveolar bone thickness of mandibular incisors were assessed. Buccal (B), lingual (L) and total (T) bone thicknesses were assessed at crestal (1), midroot (2) and apical (3) levels of mandibular incisors. Student's t-test and Wilcoxon t-test were used to compare dependent samples in parametric and nonparametric cases, respectively. Pearson's and Spearman's rank correlation analyses were performed to determine the relationship of changes in alveolar bone thickness. Results were considered at a significance level of 5%. Results: Mandibular incisors showed no statistical significance for vertical alveolar bone level. Alveolar bone thickness of mandibular incisors significantly reduced after treatment at B1, B2, B3, T1 and significantly increased at L2. The magnitude of the statistically significant changes was less than 0.2 mm. The changes in alveolar bone thickness showed no statistical significance with incisor inclination degree. Conclusions: CBCT scans showed an association between the Herbst appliance and alveolar bone loss on the buccal surface of mandibular incisors; however, without clinical significance.


2019 ◽  
Vol 90 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Fan Zhang ◽  
Suk-Cheol Lee ◽  
Jun-Beom Lee ◽  
Kyung-Min Lee

ABSTRACT Objective: To evaluate changes in shape and alterations in thickness and vertical marginal bone levels of the alveolar bone around the maxillary and mandibular incisors before and after orthodontic treatment with premolar extraction using geometric morphometric analysis. Materials and Methods: Thirty-six patients with Class I bialveolar protrusion who underwent orthodontic treatment with premolar extraction were included. Cone-beam computed tomographic scans were obtained from the patients before and after treatment. Five fixed landmarks and 70 semilandmarks were used to represent the morphology of the alveolar bone around the maxillary and mandibular incisors. The coordinates of the landmarks of the alveolar bones were generated by Procrustes fit. The labial and lingual alveolar bone thicknesses around the maxillary and mandibular incisors and vertical marginal bone level were assessed quantitatively. Results: There was a significant difference in shape change of the alveolar bone before and after treatment. The deformation grid of the thin plate spline showed that the thickness and vertical marginal bone decreased on the lingual side after treatment. Shape changes were greater for the lingual alveolar bone on the mandibular incisor than for the maxillary incisors. Conclusions: Orthodontic treatment with premolar extraction might cause loss of alveolar bone around the maxillary and mandibular incisors. Careful consideration is needed to avoid iatrogenic degeneration of periodontal support around the incisors, particularly in the lingual area.


2020 ◽  
Vol 56 (01) ◽  
pp. 42-45
Author(s):  
Archana M. ◽  
Sadaksharam Jayachandran

Abstract Introduction Fractal dimension (FD) analysis gives a numerical measure of the degree of boundary irregularity or surface roughness of an object and is based on quantitative analysis of features in an image. It quantifies the trabecular pattern of bone by analyzing the trabecular bone and bone marrow detecting the early changes in alveolar bone mineral content. The aim of this study is to assess the alveolar bone density by FD analysis in digital orthopantomograms (OPGs) showing bony erosion. Materials and Methods The OPGs of 10 patients from the archives of Department of Oral Medicine and Radiology were included in this retrospective study. The radiographs were selected based on set inclusion and exclusion criteria. FD analysis through box counting (using ImageJ software) was applied to the digital radiographs to establish a noninvasive evaluation of bone structure. The FD values obtained were recorded. Results The FD values were recorded and the data were analyzed. FD values showed statistical significance with p < 0.05. Conclusion With the number of samples analyzed and the results obtained, it can be concluded that FD analysis is an innovative method which can be used for early diagnosis of bony invasion in oral cancer. It can serve as a guide to dental surgeons in identifying the extent of bony invasion and can help in determining the margins of surgical resection of oral malignancy. This will prove to be a useful tool in surgical planning of oral malignancy.


2021 ◽  
Author(s):  
Ting Jiang ◽  
Jian Kai Wang ◽  
Yang Yang Jiang ◽  
Zheng Hu ◽  
Guo Hua Tang

ABSTRACT Objectives To evaluate the accuracy of integrated models (IMs) constructed by pretreatment cone-beam computed tomography (pre-CBCT) in diagnosing alveolar defects after treatment with clear aligners. Materials and Methods Pre-CBCT and posttreatment cone-beam computed tomography (CBCT) scans from 69 patients who completed nonextraction treatment with clear aligners were collected. The IMs comprised anterior teeth in predicted positions and alveolar bone from pre-CBCT scans. The accuracy of the IMs for identifying dehiscences or fenestrations was evaluated by comparing the means of the defect volumes, absolute mean differences, and Pearson correlation coefficients with those measured from post-CBCT scans. Defect prediction accuracy was assessed by sensitivity, specificity, positive predictive values, and negative predictive values. Factors possibly affecting changes in mandibular alveolar defects were analyzed using a mixed linear model. Results The IM measurements showed mean deviations of 2.82 ± 9.99 mm3 for fenestrations and 3.67 ± 9.93 mm3 for dehiscences. The absolute mean differences were 4.50 ± 9.35 mm3 for fenestrations and 5.17 ± 9.24 mm3 for dehiscences. The specificities of the IMs were higher than 0.8, whereas the sensitivities were both lower (fenestration = 0.41; dehiscence = 0.53). The positive predictive values were unacceptable (fenestration = 0.52; dehiscence = 0.62), and the overall reliability was low (&lt;0.80). Molar distalization and proclination were positively correlated with significant increases in alveolar defects at the mandibular incisors after treatment. Conclusions Alveolar defects after clear aligner treatment cannot be simulated accurately by IMs constructed from pre-CBCT. Caution should be taken in the treatment of crowding with proclination and molar distalization for the safety of alveolar bone at the mandibular incisors.


Sign in / Sign up

Export Citation Format

Share Document