Modification of Proteins in Endothelial Cell Death during Oxidative Stress

1997 ◽  
Vol 22 (7) ◽  
pp. 1277-1282 ◽  
Author(s):  
Henry P Ciolino ◽  
Rodney L Levine
2019 ◽  
Vol 21 (5) ◽  
pp. 466-472 ◽  
Author(s):  
Raquel Rodríguez-González ◽  
Piero Pollesello ◽  
Aurora Baluja ◽  
Julián Álvarez

Levosimendan is a myocardial Ca2+sensitizer and opener of ATP-dependent potassium channels with inotropic, vasodilating, and cardioprotective properties. It was originally developed for the treatment of acute decompensated heart failure, but its complex mechanism of action means that it could also play a role in organ protection in response to infection. Using an in vitro approach, we explored whether levosimendan administration influenced cell responses to lipopolysaccharide (LPS). Primary human umbilical vein endothelial cells were stimulated with 1 µg/ml LPS from Escherichia coli ( E. coli). Cells were treated with levosimendan at 0, 0.1, 1, or 10 µM 3 hr later. Samples were taken 24 hr after treatment to measure cell necrosis, apoptosis, pro-inflammatory mediators (interleukin 6 [IL-6] and toll-like receptor 4 [TLR4]), and oxidative stress (total reactive oxygen species/reactive nitrogen species [ROS/RNS]). Levosimendan at 1 and 10 µM protected against LPS-induced endothelial cell death and reduced TLR4 expression ( p < .05). All doses reduced levels of IL-6 and ROS/RNS ( p < .05). Findings suggest that levosimendan may exert protective effects against endothelial cell death in this model via attenuation of inflammation and oxidative stress pathways. Future studies might explore the potential beneficial role of levosimendan in modulating molecular mechanisms triggered by infections.


2001 ◽  
Vol 306 (3) ◽  
pp. 409-416 ◽  
Author(s):  
A. Burlacu ◽  
V. Jinga ◽  
A. Gafencu ◽  
M. Simionescu

2001 ◽  
Vol 90 (6) ◽  
pp. 2279-2288 ◽  
Author(s):  
Martin H. Beauchamp ◽  
Ana Katherine Martinez-Bermudez ◽  
Fernand Gobeil ◽  
Anne Marilise Marrache ◽  
Xin Hou ◽  
...  

Microvascular degeneration is an important event in oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity. Because oxidant stress abundantly generates thromboxane A2(TxA2), we tested whether TxA2plays a role in retinal vasoobliteration of OIR and contributes to such vascular degeneration by direct endothelial cytotoxicity. Hyperoxia-induced retinal vasoobliteration in rat pups (80% O2exposure from postnatal days 5–14) was associated with increased TxB2generation and was significantly prevented by TxA2synthase inhibitor CGS-12970 (10 mg · kg−1· day−1) or TxA2-receptor antagonist CGS-22652 (10 mg · kg−1· day−1). TxA2mimetics U-46619 (EC5050 nM) and I-BOP (EC505 nM) caused a time- and concentration-dependent cell death of neuroretinovascular endothelial cells from rats as well as newborn pigs but not of smooth muscle and astroglial cells; other prostanoids did not cause cell death. The peroxidation product 8-iso-PGF2, which is generated in OIR, stimulated TxA2formation by endothelial cells and triggered cell death; these effects were markedly diminished by CGS-12970. TxA2-dependent neuroretinovascular endothelial cell death was mostly by necrosis and to a lesser extent by apoptosis. The data identify an important role for TxA2in vasoobliteration of OIR and unveil a so far unknown function for TxA2in directly triggering neuroretinal microvascular endothelial cell death. These effects of TxA2might participate in other ischemic neurovascular injuries.


Author(s):  
Jiunn-Tay Lee ◽  
Giia-Sheun Peng ◽  
Shao-Yuan Chen ◽  
Chang-Hung Hsu ◽  
Chun-Chieh Lin ◽  
...  

2012 ◽  
Vol 1489 ◽  
pp. 133-139 ◽  
Author(s):  
J.A. Lockman ◽  
W.J. Geldenhuys ◽  
M.R. Jones-Higgins ◽  
J.D. Patrick ◽  
D.D. Allen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document