microvascular endothelial cell
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 151)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Chichi Li ◽  
Min Wang ◽  
Wangjia Wang ◽  
Yuping Li ◽  
Dan Zhang

Abstract Background: Small extracellular vesicles (sEVs) have been recognized to be more effective than direct stem cell differentiation into functional target cells in preventing tissue injury and promoting tissue repair. Our previous study demonstrated the protective effect of adipose-derived stem cells (ADSCs) on lipopolysaccharide (LPS)-induced acute lung injury and the effect of autophagy on ADSC functions, but the role of ADSC-derived sEVs (ADSC-sEVs) and autophagy-mediated regulation of ADSC-sEVs in LPS-induced pulmonary microvascular barrier damage remains unclear. Methods: After treatment with sEVs from ADSCs with or without autophagy inhibition, LPS-induced human pulmonary microvascular endothelial cell (HPMVECs) barrier damage was detected. LPS-induced acute lung injury in mice was assessed in vivo after intravenous administration of sEVs from ADSCs with or without autophagy inhibition. The effects of autophagy on the bioactive miRNA components of ADSC-sEVs were assessed after prior inhibition of cell autophagy. Results: We found that ADSC-sEV effectively alleviated LPS-induced apoptosis, tight junction damage and high permeability of PMVECs. Moreover, in vivo administration of ADSC-sEV markedly inhibited LPS-triggered lung injury. However, autophagy inhibition, markedly weakened the therapeutic effect of ADSC-sEVs on LPS-induced PMVECs barrier damage and acute lung injury. In addition, autophagy inhibition, prohibited the expression of five specific miRNAs in ADSC-sEVs -under LPS-induced inflammatory conditions. Conclusions: Our results indicate that ADSC-sEVs protect against LPS-induced pulmonary microvascular barrier damage and acute lung injury. Autophagy is a positive mediator of sEVs function, at least in part through controlling the expression of bioactive miRNAs in sEVs.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
Davide Maggi

The insulin-like growth factor 1 (IGF-1) stimulates expression and secretion of vascular endothelial growth factor-A (VEGF-A), the main actor in ocular neovascularization, by RPE cells. Activity of IGF-1 is regulated by interaction between its receptor and Caveolin-1 (Cav-1), the main component of caveolae. The aim of this study was to investigate whether modulation of Cav-1 expression affects synthesis and secretion of VEGF-A. ARPE-19 cells were transfected with small interfering RNA for Cav-1 (si-Cav-1) and with control siRNA (si-CTR) and stimulated with IGF-1. We found that down-regulation of Cav-1 did not affect activation of IGF-1R but regulated in an opposite manner the phosphorylation of Akt and Erk1/2. Moreover, we found that IGF-1 increased mRNA levels of VEGF-A in both si-CTR and in si-Cav-1 ARPE-19 cells and that Cav-1 silencing significantly reduced basal and IGF-1-stimulated VEGF-A release. Then we investigated the response of the microvascular endothelial cell line HMEC-1 to secretory products of ARPE-19 cells by evaluating wound healing closure, finding that conditioned media from si-Cav-1-ARPE-19 cells reduced endothelial cell migration rate. These data demonstrate that Cav-1 regulates secretion of VEGF-A, and that the depletion of Cav-1 reduces IGF-1 induced VEGF-A secretion in ARPE-19 cells and the migratory potential of their secretory products.


Author(s):  
Charlie Colin-Pierre ◽  
Nicolas Berthélémy ◽  
Nicolas Belloy ◽  
Louis Danoux ◽  
Vincent Bardey ◽  
...  

The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xiaobo Yang ◽  
Xiuying Li ◽  
Chuanhong Zhong ◽  
Jianhua Peng ◽  
Jinwei Pang ◽  
...  

Background. Circular RNA phosphorylase kinase regulatory subunit alpha 2 (circPHKA2; hsa_circ_0090002) has a significantly, specifically different expression in acute ischemic stroke (AIS) patients’ blood. Here, we intended to investigate the role and mechanism of circPHKA2 in oxygen-glucose deprivation- (OGD-) induced stoke model in human brain microvascular endothelial cells (HBMEC). Methods. Expression of circPHKA2, microRNA- (miR-) 574-5p, and superoxide dismutase-2 (SOD2) was detected by quantitative PCR and western blotting. Cell injury was measured by detecting cell proliferation (EdU assay and CCK-8 assay), migration (transwell assay), neovascularization (tube formation assay), apoptosis (flow cytometry and western blotting), endoplasmic reticulum stress (western blotting), and oxidative stress (assay kits). Direct intermolecular interaction was determined by bioinformatics algorithms, dual-luciferase reporter assay, biotin-labelled miRNA capture, and argonaute 2 RNA immunoprecipitation. Results. circPHKA2 was downregulated in AIS patients’ blood in SOD2-correlated manner. Reexpressing circPHKA2 rescued EdU incorporation, cell viability and migration, tube formation, B cell lymphoma-2 (Bcl-2) expression, and SOD activity of OGD-induced HBMEC and alleviate apoptotic rate and levels of Bcl-2-associated protein (Bax), glucose-regulated protein 78 kD (GRP78), C/EBP-homologous protein (CHOP), caspase-12, reactive oxygen species (ROS), and malondialdehyde (MDA). Additionally, blocking SOD2 partially attenuated these roles of circPHKA2 overexpression. Molecularly, circPHKA2 upregulated SOD2 expression via interacting with miR-574-5p, and miR-574-5p could target SOD2. Similarly, allied to neurovascular protection of circPHKA2 was the downregulation of miR-574-5p. Conclusion. circPHKA2 could protect HBMEC against OGD-induced cerebral stroke model via the miR-574-5p/SOD2 axis, suggesting circPHKA2 as a novel and promising candidate in ischemic brain injury.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2026-2026
Author(s):  
Tomasz Brzoska ◽  
Elizaveta V Menchikova ◽  
Tomasz W. Kaminski ◽  
Ravi Vats ◽  
Egemen Tutuncuoglu ◽  
...  

Abstract Acute systemic painful vaso-occlusive episode (VOE) often serves as an antecedent to acute chest syndrome (ACS), which is a type of acute lung injury and the leading cause of mortality among sickle cell disease (SCD) patients. Based on clinical epidemiology, ACS is often preceded by thrombocytopenia and involves massive thrombosis across pulmonary artery branches in 10-20% of ACS patients. Although, released during hemolysis, adenosine diphosphate (ADP) is known to activate platelets by stimulating their P2Y1 and P2Y12 purinergic receptors, antagonists of P2Y12 have not shown any benefit in ACS therapy, justifying the need for better understanding of purinergic signaling in SCD. Ecto-nucleoside-tri-phosphate-diphosphohydrolase-1 (E-NTPDase1; CD39) maintains ADP homeostasis by degrading excessive ADP. Though CD39 inhibits ADP-dependent platelet activation and vascular thrombosis, its role in ASC is still unidentified. Here, we use intravital lung microscopy in transgenic humanized SCD mice to show that intravascular (IV) administration of ADP triggered pulmonary thrombosis in control mice but failed to trigger pulmonary thrombosis in SCD mice. Identical to intravital findings, IV ADP administration also evoked transient thrombocytopenia in control but not SCD mice, while, IV collagen led to comparable drop in platelet count in both SCD and control mice. In vitro turbidimetric aggregation study yet again demonstrated impaired SCD mouse platelet response to ADP, which was significantly augmented by CD39 inhibitor (sodium metatungstate, POM-1). Indeed, we found significantly higher plasma levels and activity of CD39 in SCD mice compared to control mice using ELISA and malachite green assays, respectively. Hemin, a major host-derived damage associated molecular pattern (DAMP) in SCD, was incubated with Human Lung MicroVascular Endothelial Cell (HMVEC-L) to assess CD39 expression using western blotting. Hemin (10 -100 µM) in a dose dependent manner decreased CD39 levels in HMVEC-L. Our current findings suggest that elevated CD39 plasma levels and activity possibly prevents ADP-mediated platelet aggregation and pulmonary thrombosis in SCD. We demonstrated that SCD milieu promotes loss of endothelial CD39, which may be directly associated with increased CD39 plasma levels and activity. Current study explains why P2Y12 blockers are not effective in SCD therapy and warrant the need for further studies to understand the role of purinergic signaling in pathogenesis of ACS. Disclosures Sundd: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Behring Inc: Research Funding; Bayer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document