scholarly journals Parallel Evolution and Coexpression of the Proteolipid Proteins and Protein Zero in Vertebrate Myelin

Neuron ◽  
1996 ◽  
Vol 16 (6) ◽  
pp. 1115-1126 ◽  
Author(s):  
M Yoshida ◽  
D.R Colman
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1065
Author(s):  
Armando Rubio-Ramos ◽  
Leticia Labat-de-Hoz ◽  
Isabel Correas ◽  
Miguel A. Alonso

The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.


Author(s):  
Giulia Bisogni ◽  
Angela Romano ◽  
Amelia Conte ◽  
Giorgio Tasca ◽  
Daniela Bernardo ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Walter Tiberti ◽  
Dajana Cassioli ◽  
Antinisca Di Marco ◽  
Luigi Pomante ◽  
Marco Santic

Advances in technology call for a parallel evolution in the software. New techniques are needed to support this dynamism, to track and guide its evolution process. This applies especially in the field of embedded systems, and certainly in Wireless Sensor Networks (WSNs), where hardware platforms and software environments change very quickly. Commonly, operating systems play a key role in the development process of any application. The most used operating system in WSNs is TinyOS, currently at its TinyOS 2.1.2 version. The evolution from TinyOS 1.x and TinyOS 2.x made the applications developed on TinyOS 1.x obsolete. In other words, these applications are not compatible out-of-the-box with TinyOS 2.x and require a porting action. In this paper, we discuss on the porting of embedded system (i.e., Wireless Sensor Networks) applications in response to operating systems’ evolution. In particular, using a model-based approach, we report the porting we did of Agilla, a Mobile-Agent Middleware (MAMW) for WSNs, on TinyOS 2.x, which we refer to as Agilla 2. We also provide a comparative analysis about the characteristics of Agilla 2 versus Agilla. The proposed Agilla 2 is compatible with TinyOS 2.x, has full capabilities and provides new features, as shown by the maintainability and performance measurement presented in this paper. An additional valuable result is the architectural modeling of Agilla and Agilla 2, missing before, which extends its documentation and improves its maintainability.


Sign in / Sign up

Export Citation Format

Share Document