myelin protein
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 61)

H-INDEX

58
(FIVE YEARS 5)

2021 ◽  
pp. 109352662110593
Author(s):  
Raj P. Kapur ◽  
Jennifer Tisoncik-Go ◽  
Michael Gale

Background Innervation of aganglionic rectum in Hirschsprung disease derives from extrinsic nerves which project from cell bodies located outside the bowel wall and markers that distinguish extrinsic from intrinsic innervation are diagnostically useful. Myelin protein zero (MPZ) is a putative marker of extrinsic glial cells which could distinguish mucosal innervation in aganglionic vs ganglionic colon. Methods Sections and protein blots from ganglionic and aganglionic colon were immunolabeled with MPZ-specific antibodies. Results Immunolabeling of MPZ with a chicken polyclonal or mouse monoclonal antibody confirmed glial specificity and reliably labeled hypertrophic submucosal nerves in Hirschsprung disease. In contrast, a rabbit polyclonal antibody strongly labeled extrinsic and intrinsic nerves, including most mucosal branches. Immunoblots showed MPZ is expressed in mucosal glial cells, albeit at lower levels than in extrinsic nerves, and that the rabbit antibody is more sensitive that the other two probes. Unfortunately, none of these antibodies consistently distinguished mucosal innervation in aganglionic vs ganglionic rectum Conclusions The results suggest that (a) glial cell myelin protein zero expression is influenced more by location (mucosa vs submucosa) than the extrinsic vs intrinsic origin of the accompanied nerves and (b) myelin protein zero immunohistochemistry has limited value as a diagnostic adjunct for Hirschsprung disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Chen ◽  
Zaiqiang Zhang ◽  
Na Chen ◽  
Wei Li ◽  
Hua Pan ◽  
...  

Mutations in the myelin protein zero gene are responsible for the autosomal dominant Charcot-Marie-Tooth disease (CMT). We summarized the genetic and clinical features of six unrelated Chinese families and the genetic spectrum of Chinese patients with myelin protein zero (MPZ) mutations. Our study reports data from a group of Chinese patients consisting of five males and one female with the age of disease onset ranging from 16 to 55 years. The initial symptom in all the patients was the weakness of the lower limbs. Electrophysiological presentations suggested chronic progressive sensorimotor demyelinating polyneuropathy. Overall six mutations were identified in the cohort, including four known mutations [c.103G>T (p.D35Y), c.233C>T (p.S78L), c.293G>A (p.R98H), and c.449-1G>T], and two novel mutations [c.67+4A>G with a mild CMT1B phenotype, and (c.79delG) p.A27fs with a rapidly progressive CMT1B phenotype]. According to the literature review, there are 35 Chinese families with 28 different MPZ mutations. The MPZ mutational spectrum in Chinese patients is very heterogeneous and differs from that of Japanese and Korean individuals, although they do share several common hot spot mutations.


2021 ◽  
Author(s):  
Tobias J Buscham ◽  
Maria A. Eichel-Vogel ◽  
Anna M Steyer ◽  
Olaf Jahn ◽  
Nicola Strenzke ◽  
...  

Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here we find that expression of the tetraspan-transmembrane protein CMTM5 (Chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and CNS myelin. Genetic disruption of the Cmtm5-gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5-deficiency causes an early-onset progressive axonopathy, which we also observe in global and in tamoxifen-induced oligodendroglial Cmtm5-mutants. Presence of the Wlds mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.


2021 ◽  
Author(s):  
Yunhong Bai ◽  
Caroline Treins ◽  
Vera G Volpi ◽  
cristina scapin ◽  
Cinzia Ferri ◽  
...  

Charcot Marie Tooth diseases type 1A (CMT1A), caused by duplication of Peripheral Myelin Protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene are the two most common forms of demyelinating CMT (CMT1) and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modeled by MpzR98C/+ mice that also show ER-stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER-stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER-stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analyzed by behavioral, neurophysiological, morphological and biochemical measures. Both MpzR98C/+ and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild type values. Taken together our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in Amyotrophic Lateral Sclerosis and Multiple Sclerosis animal models, these data demonstrate its potential in managing UPR and ER-stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases.


2021 ◽  
pp. 105213
Author(s):  
Kazuhiro Kurokawa ◽  
Kohei Takahashi ◽  
Kazuya Miyagawa ◽  
Atsumi Mochida-Saito ◽  
Hiroshi Takeda ◽  
...  

Diabetologia ◽  
2021 ◽  
Author(s):  
Jakob Morgenstern ◽  
Jan B. Groener ◽  
Johann M. E. Jende ◽  
Felix T. Kurz ◽  
Alexander Strom ◽  
...  

Abstract Aims/hypothesis The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. Methods Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. Results In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). Conclusions/interpretation This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers. Graphical abstract


Author(s):  
Giulia Bisogni ◽  
Angela Romano ◽  
Amelia Conte ◽  
Giorgio Tasca ◽  
Daniela Bernardo ◽  
...  

FEBS Journal ◽  
2021 ◽  
Author(s):  
Maiju Uusitalo ◽  
Martin Berg Klenow ◽  
Saara Laulumaa ◽  
Matthew P. Blakeley ◽  
Adam Cohen Simonsen ◽  
...  
Keyword(s):  

Author(s):  
Marie Subréville ◽  
Nathalie Bonello‐Palot ◽  
Douniazed Yahiaoui ◽  
Sadia Beloribi‐Djefaflia ◽  
Sara Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document