Humite- and scapolite-bearing assemblages in marbles and calcsilicates of Dronning Maud Land, Antarctica: New data for Gondwana reconstructions Piazolo S. & Markl G., Journal of Metamorphic Geology, 1999, 17/1 (91?107)

Keyword(s):  
1990 ◽  
Vol 8 (2) ◽  
pp. 99-126 ◽  
Author(s):  
Y. Ohta ◽  
B. O. Tørudbakken ◽  
K. Shiraishi

2016 ◽  
Author(s):  
Bernardo Cesare ◽  
◽  
Silvio Ferrero ◽  
Rosaria Palmeri ◽  
Gaston Godard

2015 ◽  
Vol 12 (5) ◽  
pp. 892-903 ◽  
Author(s):  
Marc Chang ◽  
Stewart S.R. Jamieson ◽  
Michael J. Bentley ◽  
Chris R. Stokes
Keyword(s):  

Tellus B ◽  
2005 ◽  
Vol 57 (1) ◽  
pp. 51-57 ◽  
Author(s):  
URS SIEGENTHALER ◽  
ERIC MONNIN ◽  
KENJI KAWAMURA ◽  
RENATO SPAHNI ◽  
JAKOB SCHWANDER ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 219-231
Author(s):  
Susanne Ingvander ◽  
Peter Jansson ◽  
Ian A. Brown ◽  
Shuji Fujita ◽  
Shin Sugyama ◽  
...  

AbstractIn this study, snow particle size variability was investigated along a transect in Dronning Maud Land from the coast to the polar plateau. The aim of the study was to better understand the spatial and temporal variations in surface snow properties. Samples were collected twice daily during a traverse in 2007–08 to capture regional variability. Local variability was assessed by sampling in 10×10 m grids (5 m spacing) at selected locations. The particle size and shape distributions for each site were analysed through digital image analysis. Snow particle size variability is complex at different scales, and shows an internal variability of 0.18–3.31 mm depending on the sample type (surface, grid or pit). Relationships were verified between particle size and both elevation and distance to the coast (moisture source). Regional seasonal changes were also identified, particularly on the lower elevations of the polar plateau. This dataset may be used to quantitatively analyse the optical properties of surface snow for remote sensing. The details of the spatial and temporal variations observed in our data provide a basis for further studies of the complex and coupled processes affecting snow particle size and the interpretation of remote sensing of snow covered areas.


2008 ◽  
Vol 54 (185) ◽  
pp. 315-323 ◽  
Author(s):  
Helgard Anschütz ◽  
Daniel Steinhage ◽  
Olaf Eisen ◽  
Hans Oerter ◽  
Martin Horwath ◽  
...  

AbstractSpatio-temporal variations of the recently determined accumulation rate are investigated using ground-penetrating radar (GPR) measurements and firn-core studies. The study area is located on Ritscherflya in western Dronning Maud Land, Antarctica, at an elevation range 1400–1560 m. Accumulation rates are derived from internal reflection horizons (IRHs), tracked with GPR, which are connected to a dated firn core. GPR-derived internal layer depths show small relief along a 22 km profile on an ice flowline. Average accumulation rates are about 190 kg m−2 a−1 (1980–2005) with spatial variability (1σ) of 5% along the GPR profile. The interannual variability obtained from four dated firn cores is one order of magnitude higher, showing 1σ standard deviations around 30%. Mean temporal variations of GPRderived accumulation rates are of the same magnitude or even higher than spatial variations. Temporal differences between 1980–90 and 1990–2005, obtained from two dated IRHs along the GPR profile, indicate temporally non-stationary processes, linked to spatial variations. Comparison with similarly obtained accumulation data from another coastal area in central Dronning Maud Land confirms this observation. Our results contribute to understanding spatio-temporal variations of the accumulation processes, necessary for the validation of satellite data (e.g. altimetry studies and gravity missions such as Gravity Recovery and Climate Experiment (GRACE)).


1997 ◽  
Vol 9 (1) ◽  
pp. 43-45 ◽  
Author(s):  
U. Wand ◽  
G. Schwarz ◽  
E. Brüggemann ◽  
K. Bräuer

Lake Untersee is the largest freshwater lake in the interior of East Antarctica. It is a perennially ice-covered, max. 169 m deep, ultra-oligotrophic lake. In contrast to earlier studies, we found clear evidence for physical and chemical stratification in the summer of 1991–92. However, the stratification was restricted to a trough, c. 500 m wide and up to 105 m deep, in the south-western part of the lake. There, the water body was distinctly stratified as indicated by sharp vertical gradients of temperature, pH, dissolved oxygen, and electrical conductivity. The water column was anoxic below 80 m. The chemical stratification is also indicated by changes of ionic ratios. Moreover, there was some evidence for methanogenesis and bacterial sulphate reduction in Lake Untersee.


Sign in / Sign up

Export Citation Format

Share Document