firn core
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 428
Author(s):  
Kirstin Hoffmann-Abdi ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Johannes Freitag ◽  
Thomas Opel ◽  
...  

High-accumulation sites are crucial for understanding the patterns and mechanisms of climate and environmental change in Antarctica since they allow gaining high-resolution proxy records from firn and ice. Here, we present new glacio- and isotope-geochemical data at sub-annual resolution from a firn core retrieved from an ice cap on Plateau Laclavere (LCL), northern Antarctic Peninsula, covering the period 2012–2015. The signals of two volcanic eruptions and two forest fire events in South America could be identified in the non-sea-salt sulphur and black carbon records, respectively. Mean annual snow accumulation on LCL amounts to 2500 kg m−2 a−1 and exhibits low inter-annual variability. Time series of δ18O, δD and d excess show no seasonal cyclicity, which may result from (1) a reduced annual temperature amplitude due to the maritime climate and (2) post-depositional processes. The firn core stratigraphy indicates strong surface melt on LCL during austral summers 2013 and 2015, likely related to large-scale warm-air advection from lower latitudes and temporal variations in sea ice extent in the Bellingshausen-Amundsen Sea. The LCL ice cap is a highly valuable natural archive since it captures regional meteorological and environmental signals as well as their connection to the South American continent.


2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


2021 ◽  
Author(s):  
Maria Hoerhold ◽  
Thomas Münch ◽  
Stefanie Weißbach ◽  
Sepp Kipfstuhl ◽  
Bo Vinther ◽  
...  

<p>Climate variability of the Arctic region has been investigated by means of temperature reconstructions based on proxies from various climate archives around the Arctic, compiled over the last 2000a in the so called Arctic2k record. However, the representativeness of the Arctic2k reconstruction for central Greenland remains unclear, since only a few ice cores have been included in the reconstruction, and observations from the Greenland Ice Sheet (GIC) report ambiguous warming trends for the end of the 20th and the beginning of the 21st century which are not displayed by Arctic2k. Today, the GIC experiences periods with temperatures close to or above the freezing point at high elevations, area-wide melting and mass loss. In order to assess the recent warming as signature of global climate change, records of past climate changes with appropriate temporal and spatial coverage can serve as a benchmark for naturally driven climate variability. Instrumental records for Greenland are short and geographically sparse, and existing temperature reconstructions from single ice cores are noisy, leading to an inconclusive assessment of the recent warming for Greenland.</p><p>Here, we provide a Greenland firn-core stack covering the time span of the last millennium until the first decade of the 21<sup>st </sup>century in unprecedented quality by re-drilling as well as analyzing 16 existing firn core sites. We find a strong decadal to bi-decadal natural variability in the record, and, while the record exhibits several warming events with trends that show a similar amplitude as the recent one, we find that the recent absolute values of stable oxygen isotope composition are unprecedented for the last 1000 years.</p><p> </p><p>Comparing our Greenland record with the Arctic 2k temperature reconstruction shows that the correlation between the two records changes throughout the last millennium. While in the periods of 1200-1300 and 1400-1650 CE the records correlate positively, between 1300 and 1400 and 1650-1700 CE shorter periods with negative correlation are found. Since then the correlation is characterized by alternation between positive and zero correlation, with a drop towards negative values at the end of the 20<sup>th</sup> century. Including re-analysis data, we hypothesize that the climate on top of the GIC was decoupled from the surrounding Arctic for the last decades, leading to the observed mismatch in observations of warming trends.</p><p>We suggest that the recently observed Greenland temperatures are a superposition of a strong natural variability with an anthropogenic long-term trend. Our findings illustrate that global warming has reached the interior of the Greenland ice sheet, which will have implications for its surface mass balance and Greenland’s future contribution to sea level rise.</p><p>Our record complements the Arctic 2k record to a profound view on the Arctic climate variability, where regional compilations may not be representative for specific areas.</p>


2020 ◽  
Author(s):  
Filipe Gaudie Ley Lindau ◽  
Jefferson Cardia Simões ◽  
Michael Handley ◽  
Elena Korotkikh ◽  
Patrick Ginot ◽  
...  

2020 ◽  
Vol 66 (260) ◽  
pp. 916-926
Author(s):  
Yalalt Nyamgerel ◽  
Yeongcheol Han ◽  
Songyi Kim ◽  
Sang-Bum Hong ◽  
Jeonghoon Lee ◽  
...  

AbstractUnder the potential to reconstruct the past climatic and atmospheric conditions from a deep ice core in the coastal Antarctic site (Styx Glacier), an 8.84 m long firn core (73°50.975′ S, 163°41.640′ E; 1623 m a.s.l.) was initially studied to propose a reliable age scale for the local estimation of snow accumulation rate. The seasonal variations of δ18O, methanesulfonic acid (MSA) and non-sea-salt sulfate (nssSO42–) were used for the firn core dating and revealed 25 annual peaks (from 1990 to 2014) with volcanic sulfate signal. The observed declining trend in annual accumulation rate with a mean value of 146 ± 60 kg m–2 a–1 is likely to be linked to the changes of sea-ice extent in the Ross Sea region. Moreover, the temporal variation of the annual mean δ18O, an annual flux of MSA and nssSO42– also likely to be under the influence of ice-covered and open water area. This study suggests a potential to recover past changes in an oceanic environment and will be useful for the interpretation of the long ice core drilled at the same site.


2020 ◽  
Vol 14 (5) ◽  
pp. 1537-1554 ◽  
Author(s):  
Luciano Marquetto ◽  
Susan Kaspari ◽  
Jefferson Cardia Simões

Abstract. Black carbon (BC) is an important climate-forcing agent that affects snow albedo. In this work, we present a record of refractory black carbon (rBC) variability, measured from a 20 m deep snow and firn core drilled in West Antarctica (79∘55′34.6′′ S, 94∘21′13.3′′ W, 2122 m above sea level) during the 2014–2015 austral summer. This is the highest elevation rBC record from West Antarctica. The core was analyzed using the Single Particle Soot Photometer (SP2) coupled to a CETAC Marin-5 nebulizer. Results show a well-defined seasonality with geometric mean concentrations of 0.015 µg L−1 for the wet season (austral summer–fall) and 0.057 µg L−1 for the dry season (austral winter–spring). The core was dated to 47 years (1968–2015) using rBC seasonality as the main parameter, along with sodium (Na), sulfur (S) and strontium (Sr) variations. The annual rBC concentration geometric mean was 0.03 µg L−1, the lowest of all rBC cores in Antarctica referenced in this work, while the annual rBC flux was 6.25 µg m−2 a−1, the lowest flux in West Antarctica rBC records. No long-term trend was observed. Snow albedo reductions at the site due to BC were simulated using SNICAR online and found to be insignificant (−0.48 %) compared to clean snow. Fire spot inventory and BC emission estimates from the Southern Hemisphere suggest Australia and Southern Hemisphere South America as the most probable emission sources of BC to the drilling site, whereas HYSPLIT model particle transport simulations from 1968 to 2015 support Australia and New Zealand as rBC sources, with limited contributions from South America. Spectral analysis (REDFIT method) of the BC record showed cycles related to the Antarctic Oscillation (AAO) and to El Niño–Southern Oscillation (ENSO), but cycles in common with the Amundsen Sea Low (ASL) were not detected. Correlation of rBC records in Antarctica with snow accumulation, elevation and distance to the sea suggests rBC transport to East Antarctica is different from transport to West Antarctica.


JOKULL ◽  
2020 ◽  
pp. 157-159
Author(s):  
Magnús Tumi Gudmundsson ◽  
Jósef Hólmjárn
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document