Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review

1998 ◽  
Vol 19 (3-4) ◽  
pp. 265-280 ◽  
Author(s):  
Kevin C. Taylor ◽  
Hisham A. Nasr-El-Din
SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 43-54 ◽  
Author(s):  
Guillaume Dupuis ◽  
David Rousseau ◽  
René Tabary ◽  
Bruno Grassl

Summary The specific molecular structure of hydrophobically modified water-soluble polymers (HMWSPs), also called hydrophobically associative polymers, gives them interesting thickening and surface-adsorption abilities compared with classical water-soluble polymers (WSPs), which could be useful in polymer-flooding and well-treatment operations. However, their strong adsorption obviously can impair their injectivity, and, conversely, the shear sensitivity of their gels can be detrimental to well treatments. Determining for which improved-oil-recovery (IOR) application HMWSPs are best suited, therefore, remains difficult. The aim of this work is to bring new insight regarding the interaction mechanisms between HMWSPs and rock matrix and the consequences concerning their propagation in reservoirs. A consistent set of HMWSPs with sulfonated polyacrylamide backbones and alkyl hydrophobic side chains together with an equivalent WSP was synthesized and fully characterized. HMWSP and WSP solutions were then injected in model granular packs. As expected, with HMWSPs, high resistance factors (or mobility reductions, Rm) were observed. Yet, within the limit of the injected volumes, the effluent showed the same viscosity and polymer concentration as the injected solutions. A first significant outcome concerns the specificities of the Rm curves during HMWSP injections. Rm increases took place in two steps. The first corresponded to the propagation of the viscous front, as observed with WSP, whereas the second was markedly delayed, occurring several pore volumes (PV) after the breakthrough. This result is not compatible with the classical picture of multilayer adsorption of HMWSPs but suggests that injectivity is controlled solely by the adsorption of minor polymeric species. This hypothesis was confirmed by reinjecting the collected effluents into fresh cores; no second-step Rm increases were observed. Brine injections in HMWSP-treated cores revealed high residual resistance factors (or irreversible permeability reductions, Rk), which can be attributed to the presence of thick polymer-adsorbed layers on the pore surface. Nevertheless, Rk values strongly decreased when increasing the brine-flow rate. This second significant outcome shows that the adsorbed-layer thickness is shear-controlled. These new results should lead to proposing new adapted filtration and injection procedures for HMWSPs, aimed, in particular, at improving their injectivity.


2015 ◽  
Vol 39 (10) ◽  
pp. 7805-7814 ◽  
Author(s):  
Shaohua Gou ◽  
Shan Luo ◽  
Tongyi Liu ◽  
Peng Zhao ◽  
Yang He ◽  
...  

We report here a novel imidazoline functionalized hydrophobically associating copolymer that exhibits excellent rheological properties and outstanding potential for enhanced oil recovery.


2014 ◽  
Vol 67 (10) ◽  
pp. 1396 ◽  
Author(s):  
Quanhua Deng ◽  
Haiping Li ◽  
Ying Li ◽  
Xulong Cao ◽  
Yong Yang ◽  
...  

The rheological properties of electrolyte solution of a hydrophobically associating acrylamide-based copolymer (HA-PAM) containing hydrophobically modified monomer and sodium 2-acrylamido-2-methylpropanesulfonic sulfonate were investigated in this paper. The study mainly focussed on effects of electrolyte concentration, temperature, and shear rate on the solution rheological properties. HA-PAM exhibited much stronger salt tolerance and shearing resistance than the commonly used partially hydrolyzed polyacrylamide, and has great potential for application in tertiary oil recovery of oilfields with high salinity. The salt resistance mechanism of HA-PAM in solution was investigated by combining molecular simulation and experimental methods. The structure–performance relationship of the salt-resisting polymer may provide useful guidance for design and synthesis of novel water-soluble polymers with high salt resistance.


2016 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Norrulhuda Mohd Taib ◽  
Norfarisha Achim ◽  
Zulkafli Hassan

In this study the role of polymer flooding as one of the most efficient processes to enhance oil recovery (EOR) is discussed.  Polyhydroxybutyrate (PHB) is a bio-based polymer that has potential application for use in polymer flooding. This polymer is reviewed with particular emphasis on the effect of concentration, shear rate, salinity, hardness and temperature on polymer viscosity. Initial findings showed that PHB owned higher resistant as compared to mechanical degradation and thermal stability of HPAM as well as XG. 


2016 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Norrulhuda Mohd Taib ◽  
Norfarisha Achim ◽  
Zulkafli Hassan

In this study the role of polymer flooding as one of the most efficient processes to enhance oil recovery (EOR) is discussed.  Polyhydroxybutyrate (PHB) is a bio-based polymer that has potential application for use in polymer flooding. This polymer is reviewed with particular emphasis on the effect of concentration, shear rate, salinity, hardness and temperature on polymer viscosity. Initial findings showed that PHB owned higher resistant as compared to mechanical degradation and thermal stability of HPAM as well as XG.


Sign in / Sign up

Export Citation Format

Share Document