Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy

2000 ◽  
Vol 293 (1-2) ◽  
pp. 19-29 ◽  
Author(s):  
L.P. Troeger ◽  
E.A. Starke
2014 ◽  
Vol 20 (3) ◽  
pp. 183-190
Author(s):  
Mehdi Dehnavi ◽  
Mohsen Haddad Sabzevar

Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA) has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study was to investigate the effect of grain refinement on the grain size of Al-4.8 wt.%Cu alloy by cooling curve analysis. To do this, alloy was grain refined by different amount of Al-5Ti-1B master alloy and all samples were solidified at constant cooling rate of 0.19 ℃/s. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. The results show that the segregating power of Ti is very high and it segregates to the nucleant–liquid interface which leads to constitutional supercooling within which other nucleant particles get activated for nucleation. Other results show that with considering the changes in the primary undercooling (ΔTRU) as the main factor to determine the effectiveness of grain refinement process, it was found that by grain refinement, the value of undercooling decrease was approximately zero. 


Author(s):  
Ernest L. Hall ◽  
Lee E. Rumaner ◽  
Mark G. Benz

The intermetallic compound Nb3Sn is a type-II superconductor of interest because it has high values of critical current density Jc in high magnetic fields. One method of forming this compound involves diffusion of Sn into Nb foil containing small amounts of Zr and O. In order to maintain high values of Jc, it is important to keep the grain size in the Nb3Sn as small as possible, since the grain boundaries act as flux-pinning sites. It has been known for many years that Zr and O were essential to grain size control in this process. In previous work, we have shown that (a) the Sn is transported to the Nb3Sn/Nb interface by liquid diffusion along grain boundaries; (b) the Zr and O form small ZrO2 particles in the Nb3Sn grains; and (c) many very small Nb3Sn grains nucleate from a single Nb grain at the reaction interface. In this paper we report the results of detailed studies of the Nb3Sn/Nb3Sn, Nb3Sn/Nb, and Nb3Sn/ZrO2 interfaces.


2021 ◽  
pp. 138770
Author(s):  
Linlin Guan ◽  
Leiming Yu ◽  
Lijuan Wu ◽  
Shuyu Zhang ◽  
Yuting Lin ◽  
...  

1995 ◽  
Vol 102 (12) ◽  
pp. 5082-5087 ◽  
Author(s):  
Thomas Palberg ◽  
Wolfgang Mönch ◽  
Jürgen Schwarz ◽  
Paul Leiderer

2017 ◽  
Vol 544 ◽  
pp. 306-311 ◽  
Author(s):  
Shunsuke Tanaka ◽  
Kenta Okubo ◽  
Koji Kida ◽  
Miki Sugita ◽  
Takahiko Takewaki

2003 ◽  
Vol 89 (5) ◽  
pp. 616-622 ◽  
Author(s):  
Koji TAKANO ◽  
Ryuji NAKAO ◽  
Shigeo FUKUMOTO ◽  
Toshihiro TSUCHIYAMA ◽  
Setsuo TAKAKI

Sign in / Sign up

Export Citation Format

Share Document