2204 Transformation of movement dynamics information in the corticospinal system

1993 ◽  
Vol 18 ◽  
pp. S235
Author(s):  
Shoji Tanaka
2000 ◽  
Vol 42 (4) ◽  
pp. 220-227 ◽  
Author(s):  
U M Fietzek ◽  
F Heinen ◽  
S Berweck ◽  
S Maute ◽  
A Hufschmidt ◽  
...  

1985 ◽  
Vol 77 (S1) ◽  
pp. S100-S100
Author(s):  
Michael P. Caligiuri ◽  
James H. Abbs
Keyword(s):  

2016 ◽  
Vol 10 ◽  
Author(s):  
Yunuen Moreno-López ◽  
Rafael Olivares-Moreno ◽  
Matilde Cordero-Erausquin ◽  
Gerardo Rojas-Piloni

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Diogo Matos ◽  
Pedro Costa ◽  
José Lima ◽  
Paulo Costa

Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot’s positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot’s movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics and the Lazarus development environment, it was possible to simulate the execution of several different missions by the implemented system and analyze their results.


Author(s):  
Alison Pienciak-Siewert ◽  
Alaa A Ahmed

How does the brain coordinate concurrent adaptation of arm movements and standing posture? From previous studies, the postural control system can use information about previously adapted arm movement dynamics to plan appropriate postural control; however, it is unclear whether postural control can be adapted and controlled independently of arm control. The present study addresses that question. Subjects practiced planar reaching movements while standing and grasping the handle of a robotic arm, which generated a force field to create novel perturbations. Subjects were divided into two groups, for which perturbations were introduced in either an abrupt or gradual manner. All subjects adapted to the perturbations while reaching with their dominant (right) arm, then switched to reaching with their non-dominant (left) arm. Previous studies of seated reaching movements showed that abrupt perturbation introduction led to transfer of learning between arms, but gradual introduction did not. Interestingly, in this study neither group showed evidence of transferring adapted control of arm or posture between arms. These results suggest primarily that adapted postural control cannot be transferred independently of arm control in this task paradigm. In other words, whole-body postural movement planning related to a concurrent arm task is dependent on information about arm dynamics. Finally, we found that subjects were able to adapt to the gradual perturbation while experiencing very small errors, suggesting that both error size and consistency play a role in driving motor adaptation.


2021 ◽  
pp. 1-12
Author(s):  
K.A. Legg ◽  
D.J. Cochrane ◽  
E.K. Gee ◽  
C.W. Rogers

This narrative review collates data from different equestrian disciplines, both amateur and professional, to describe the physiological demands, muscle activity and synchronicity of movement involved in jockeys riding in a race and to identify limitations within our current knowledge. A literature search was conducted in Web of Science, Google Scholar, PubMed and Scopus using search terms related to jockeys, equestrian riders and their physiological demands, muscle use, movement dynamics and experience. Abstracts, theses and non-peer reviewed articles were excluded from the analysis. Jockeys work at close to their physiological capacity during a race. The quasi-isometric maintenance of the jockey position requires muscular strength and endurance, specifically from the legs and the core, both to maintain their position and adapt to the movement of the horse. Synchronous movement between horse and rider requires a coordinated activation pattern of the rider’s core muscles, resulting in less work done by the horse to carry the rider, possibly leading to a competitive advantage in race riding. Reports of chronic fatigue in jockeys demonstrate poor quantification of workload and recovery. The lack of quantitative workload metrics for jockeys’ limits calculation of a threshold required to reach race riding competency and development of sport-specific training programmes. Until the sport-specific demands of race riding are quantified, the development of evidence-based sport specific and potentially performance enhancing jockey strength and conditioning programmes cannot be realised.


Sign in / Sign up

Export Citation Format

Share Document