corticospinal system
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 13)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dongwon Kim ◽  
Raziyeh Baghi ◽  
Kyung Koh ◽  
Li-Qun Zhang ◽  
Jong-Moon Hwang

Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity including the fingers, eventually leading to flexion-favored postures. The substitution of the reticospinal tract for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of 7 male participants with hemiplegic stroke conducted isometric flexion and extension at the MCP joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, as well as, force generation and co-contraction between the flexor and extensor. All participants generated greater torque in the direction of flexion (p=0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p=0.66) while it showed faster de-activation (p=0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints and extensor weakness mainly contributes to the asymmetry between flexors and extensors.


2021 ◽  
Author(s):  
Dongwon Kim ◽  
Raziyeh Baghi ◽  
Kyung Koh ◽  
Li-Qun Zhang ◽  
Jong-Moon Hwang

Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity including the fingers, eventually leading to flexion-favored postures. The substitution of the reticospinal tract for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of 7 male participants with hemiplegic stroke conducted isometric flexion and extension at the MCP joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, as well as, force generation and co-contraction between the flexor and extensor. All participants generated greater torque in the direction of flexion (p=0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p=0.66) while it showed faster de-activation (p=0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints and extensor weakness mainly contributes to the asymmetry between flexors and extensors.


2021 ◽  
Vol 11 (5) ◽  
pp. 619
Author(s):  
Roger N. Lemon

Upper motoneurons (UMNs) in motor areas of the cerebral cortex influence spinal and cranial motor mechanisms through the corticospinal tract (CST) and through projections to brainstem motor pathways. The primate corticospinal system has a diverse cortical origin and a wide spectrum of fibre diameters, including large diameter fibres which are unique to humans and other large primates. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand motoneurons are a late evolutionary feature only present in dexterous primates and best developed in humans. CM projections are derived from a more restricted cortical territory (‘new’ M1, area 3a) and arise not only from corticospinal neurons with large, fast axons but also from those with relatively slow-conducting axons. During movement, corticospinal neurons are organised and recruited quite differently from ‘lower’ motoneurons. Accumulating evidence strongly implicates the corticospinal system in the early stages of ALS, with particular involvement of CM projections to distal limb muscles, but also to other muscle groups influenced by the CM system. There are important species differences in the organisation and function of the corticospinal system, and appropriate animal models are needed to understand disorders involving the human corticospinal system.


2021 ◽  
Author(s):  
Michela Azzaritto ◽  
Gabriel Ziegler ◽  
Eveline Huber ◽  
Patrick Grabher ◽  
Martina Callaghan ◽  
...  

Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal dependencies of these changes, and their microstructural underpinnings, remain unclear. Eighteen healthy males received training in a computer- controlled motion game 4 times a week, for 4 weeks. Performance improvements were observed in all trained participants. Serial myelin-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related myelin-sensitive microstructural changes in the grey and white matter across the corticospinal system and hippocampus. Interestingly, analysis of the trajectory of these transient changes revealed a time-shifted choreography across white and grey matter of the corticospinal system as well as with changes in the hippocampus. Crucially, in the cranial corticospinal tracts, myelin-sensitive changes during training in the posterior part of the limb of the internal capsule were of greater magnitude in lower-limb trainees compared to upper limb trainees. Motor skill learning is depended on coherent waves of plasticity within a corticospinal-hippocampal loop.


Motor Control ◽  
2021 ◽  
pp. 1-16
Author(s):  
Laura Duval ◽  
Lei Zhang ◽  
Anne-Sophie Lauzé ◽  
Yu Q. Zhu ◽  
Dorothy Barthélemy ◽  
...  

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.


2020 ◽  
Vol 26 (4) ◽  
pp. 359-379 ◽  
Author(s):  
Gerard Derosiere ◽  
Julie Duque

Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.


Sign in / Sign up

Export Citation Format

Share Document