Stimulus context dependent responses of monkey prefrontal cortex neurons

1985 ◽  
Vol 1 ◽  
pp. S10
Author(s):  
Taketoshi Ono ◽  
Kazumasa Yamatani ◽  
Hitoo Nishino ◽  
Masaji Fukuda ◽  
Hisao Nishijo
1985 ◽  
Vol 3 ◽  
pp. S10
Author(s):  
Taketoshi Ono ◽  
Kazumasa Yamatani ◽  
Hitoo Nishino ◽  
Masaji Fukuda ◽  
Hisao Nishijo

Author(s):  
Zach Cohen ◽  
Brian DePasquale ◽  
Mikio C. Aoi ◽  
Jonathan W. Pillow

AbstractA key problem in systems neuroscience is to understand how neural populations integrate relevant sensory inputs during decision-making. Here, we address this problem by training a structured recurrent neural network to reproduce both psychophysical behavior and neural responses recorded from monkey prefrontal cortex during a context-dependent per-ceptual decision-making task. Our approach yields a one-to-one mapping of model neurons to recorded neurons, and explicitly incorporates sensory noise governing the animal’s performance as a function of stimulus strength. We then analyze the dynamics of the resulting model in order to understand how the network computes context-dependent decisions. We find that network dynamics preserve both relevant and irrelevant stimulus information, and exhibit a grid of fixed points for different stimulus conditions as opposed to a one-dimensional line attractor. Our work provides new insights into context-dependent decision-making and offers a powerful framework for linking cognitive function with neural activity within an artificial model.


2009 ◽  
Vol 514 (4) ◽  
pp. 353-367 ◽  
Author(s):  
Dianne A. Cruz ◽  
Emily M. Lovallo ◽  
Steven Stockton ◽  
Matthew Rasband ◽  
David A. Lewis

2021 ◽  
Author(s):  
Xiaohan Zhang ◽  
Shenquan Liu ◽  
Zhe Sage Chen

AbstractPrefrontal cortex plays a prominent role in performing flexible cognitive functions and working memory, yet the underlying computational principle remains poorly understood. Here we trained a rate-based recurrent neural network (RNN) to explore how the context rules are encoded, maintained across seconds-long mnemonic delay, and subsequently used in a context-dependent decision-making task. The trained networks emerged key experimentally observed features in the prefrontal cortex (PFC) of rodent and monkey experiments, such as mixed-selectivity, sparse representations, neuronal sequential activity and rotation dynamics. To uncover the high-dimensional neural dynamical system, we further proposed a geometric framework to quantify and visualize population coding and sensory integration in a temporally-defined manner. We employed dynamic epoch-wise principal component analysis (PCA) to define multiple task-specific subspaces and task-related axes, and computed the angles between task-related axes and these subspaces. In low-dimensional neural representations, the trained RNN first encoded the context cues in a cue-specific subspace, and then maintained the cue information with a stable low-activity state persisting during the delay epoch, and further formed line attractors for sensor integration through low-dimensional neural trajectories to guide decision making. We demonstrated via intensive computer simulations that the geometric manifolds encoding the context information were robust to varying degrees of weight perturbation in both space and time. Overall, our analysis framework provides clear geometric interpretations and quantification of information coding, maintenance and integration, yielding new insight into the computational mechanisms of context-dependent computation.


2015 ◽  
Vol 113 (6) ◽  
pp. 1850-1861 ◽  
Author(s):  
Diana C. Rotaru ◽  
Cameron Olezene ◽  
Takeaki Miyamae ◽  
Nadezhda V. Povysheva ◽  
Aleksey V. Zaitsev ◽  
...  

In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC). Interneurons were identified on the basis of their firing pattern as fast spiking (FS), regular spiking (RS), burst spiking (BS), or irregular spiking (IS). Miniature synaptic events were common in all of the recorded interneurons, and the frequency of these events was highest in FS neurons. The amplitude and kinetics of miniature inhibitory postsynaptic potentials (mIPSPs) also differed between DLPFC interneuron subtypes in a manner correlated with their input resistance and membrane time constant. FS neurons had the fastest mIPSP decay times and the strongest effects of the GABAAR modulator zolpidem, suggesting that the distinctive properties of inhibitory synaptic inputs onto FS cells are in part conferred by GABAARs containing α1 subunits. Moreover, mIPSCs differed between FS and RS interneurons in a manner consistent with the mIPSP findings. These results show that in the monkey DLPFC GABAAR-mediated synaptic inputs are prominent in layer 3 interneurons and may differentially regulate the activity of different interneuron subtypes.


Sign in / Sign up

Export Citation Format

Share Document