The effect of temperature on strain-rate sensitivity in high strength Al–Mg alloy sheet

2002 ◽  
Vol 125-126 ◽  
pp. 193-198 ◽  
Author(s):  
E Romhanji ◽  
M Dudukovska ◽  
D Glišić
2006 ◽  
Author(s):  
M F Dilmore ◽  
Thomas B Crenshaw ◽  
Brad Lee Boyce

Minor element levels vary considerably in commercial purity ( ca .99.5 % Al) aluminium alloy sheet obtained from various sources. Minor elements may be present in solution or as second phase particles formed during solidification or subsequent processing. The present work is largely concerned with the effects of elements in solution on strain-rate sensitivity and ductility. Recent treatments of plastic instability in tensile tests incorporate the strain rate sensitivity and note its importance in determining the strain at which instability occurs (Ghosh 1977; Marciniak 1974). Tensile properties have been determined on a range of aluminium sheet samples. The results show that small increases in solute concentration can result in a change from positive (flow stress increasing with strain rate) to negative strain rate sensitivity. The rate sensitivity was found to be strain dependent and this had led to a reconsideration of the effect of strain rate sensitivity on ductility. The work suggests that it is not the absolute value of the rate sensitivity that determines its effect on the strain to plastic instability, but rather the sign of its variation with strain. If this is positive then the strain to instability exceeds that expected in the absence of rate sensitivity; if the slope is negative the opposite trend is observed.


2006 ◽  
Vol 509 ◽  
pp. 75-80 ◽  
Author(s):  
M.I. Cruz-Palacios ◽  
D. Hernández-Silva ◽  
L.A. Barrales-Mora ◽  
M.A. García-Bernal

In the present study the superplastic behavior of Al-6%Mg–0.5%Cu and Al–8%Mg– 0.5%Cu in a coarse grain size condition has been studied. The alloys are melted in an electrical furnace under argon atmosphere. The ingots (25 mm thick) are homogenized at 400 °C during 72 h and then rolled at 430 °C to a thickness of 5 mm. The mean grain size after rolling is 55 µm for the 6%Mg alloy and 61 µm for the 8%Mg alloy. Tensile test specimens are machined from the rolled plate in the rolling direction. Strain-rate-change tests at temperatures between 300 and 450 °C and strain rates between 1x10-4 and 1x10-1 s-1 are carried out to determine the strain rate sensitivity of the flow stress. Finally, elongation to failure tests are conducted at temperatures and strain rates where the alloys show a high strain rate sensitivity. Elongations higher than 390 % are obtained for the 8%Mg alloy. It is observed that the grip regions of the deformed samples show coarser grains than the regions near to the fracture surface. This means that grain refinement takes place during deformation, suggesting that the principal deformation mechanism is dislocation creep.


1966 ◽  
Vol 88 (1) ◽  
pp. 37-44 ◽  
Author(s):  
D. P. Kendall ◽  
T. E. Davidson

The effect of strain rates ranging from 10−4 to 10 in/in/sec on the yield strengths of several high strength alloy steels is investigated. Quenched and tempered-type alloys exhibit two regions of strain-rate sensitivity with the strain rate dividing the sensitive and insensitive regions varying from 0.5 to greater than 10 in/in/sec, depending on composition, microstructure and grain size. At the higher rates a power-law relationship is found which is consistent with a yielding model involving breakaway of dislocations from solute atmospheres. Maraging steel exhibits a continuous power law-strain rate sensitivity over the entire range.


Sign in / Sign up

Export Citation Format

Share Document