The Effect of Strain Rate on Yielding in High Strength Steels

1966 ◽  
Vol 88 (1) ◽  
pp. 37-44 ◽  
Author(s):  
D. P. Kendall ◽  
T. E. Davidson

The effect of strain rates ranging from 10−4 to 10 in/in/sec on the yield strengths of several high strength alloy steels is investigated. Quenched and tempered-type alloys exhibit two regions of strain-rate sensitivity with the strain rate dividing the sensitive and insensitive regions varying from 0.5 to greater than 10 in/in/sec, depending on composition, microstructure and grain size. At the higher rates a power-law relationship is found which is consistent with a yielding model involving breakaway of dislocations from solute atmospheres. Maraging steel exhibits a continuous power law-strain rate sensitivity over the entire range.

2007 ◽  
Vol 539-543 ◽  
pp. 4386-4390 ◽  
Author(s):  
M. Takahashi ◽  
A. Uenishi ◽  
H. Yoshida ◽  
H. Kuriyama

There has been a big demand for increased vehicle safety and weight reduction of auto-bodies. An extensive use of high strength steels is one of the ways to answer the requirement. Since the crashworthiness is improved by applications of higher strength steels to crashworthiness conscious structural components, various types of advanced high strength steels have been developed. The crash energy during frontal collisions is absorbed by the buckling and bending deformations of thin wall tube structures of the crushable zone of auto-bodies. In the case of side collision, on the other hand, a limited length of crushable zone requires the components to minimize the deformation during the collision. The lower the strength during press forming, the better the press formability is expected. However, the higher the strength at a collision event, the better the crashworthiness can be obtained. It can, therefore, be concluded that steels with higher strain rate sensitivities are desired. Combinations of soft ferrite phase and other hard phases were found to improve the strain rate sensitivity of flow stresses. Bake hardening is also one of the ways to improve the strain rate sensitivity of flow stresses.


Author(s):  
F. Van den Abeele ◽  
J. Peirs ◽  
P. Verleysen ◽  
F. Oikonomides ◽  
J. Van Wittenberghe

The occurrence of a longitudinal crack propagating along a gas pipeline is a catastrophic event, which involves both economic losses and environmental damage. Hence, the fracture propagation control is essential to ensure pipeline integrity. The commonly used ductile fracture control strategy for the design of high pressure pipelines is the Battelle Two Curve Method. This approach stipulates that if there is a crack speed at a given pressure that exceeds the gas decompression velocity at the same pressure, propagation will occur. However, for high strength pipeline steels, this method does not yield conservative predictions, as the absorbed impact energy during a Charpy test no longer reflects the actual burst behaviour of the pipe. Enhanced toughness measures, like Crack Tip Opening Angle and instrumented Battelle Drop Weight Tear test are being proposed as alternative options. These emerging toughness tests are complemented by numerical simulations of ductile crack propagation and arrest. Most of these models are based on the computation of void growth, and account for the local softening of the material due to void growth and subsequent coalescence. The constitutive behaviour of the sound pipeline steel is often modelled as merely an elastoplastic law, measured under quasi-static conditions. However, both Charpy tests and Battelle tests are dynamic events, which require knowledge of the strain rate sensitivity of the pipeline material. In addition, very high strain rates can occur in the vicinity of a running crack in a high pressure gas pipeline. Hence, the constitutive model for the pipeline steel has to account for strain rate sensitivity. In this paper, Split Hopkinson Tensile Bar (SHTB) experiments are reported on high strength pipeline steel. Notched tensile tests are performed at high strain rates, to assess the influence of both strain rate sensitivity and triaxiality on the response of the material. In addition, dynamic experiments are conducted at low temperatures (−70°C) to evaluate the ductility of pipeline steel under such severe conditions. The results allow discriminating between the effects of strain rate, triaxiality and temperature, and provide reliable experimental data to accurately model the constitutive behaviour of high strength pipeline steel.


2021 ◽  
Vol 11 (13) ◽  
pp. 6122
Author(s):  
Jesús Galán-López ◽  
Behnam Shakerifard ◽  
Jhon Ochoa-Avendaño ◽  
Leo A. I. Kestens

This work presents an advanced crystal plasticity model for the simulation of the mechanical behavior of multiphase advanced high-strength steels. The model is based on the Visco-Plastic Self-Consistent (VPSC) model and uses information about the material’s crystallographic texture and grain morphology together with a grain constitutive law. The law used here, based on the work of Pantleon, considers how dislocations are created and annihilated, as well as how they interact with obstacles such as grain boundaries and inclusions (carbides). Additionally, strain rate sensitivity is implemented using a phenomenological expression derived from literature data that does not require any fitting parameter. The model is applied to the study of two bainitic steels obtained by applying different heat treatments. After fitting the required parameters using tensile experiments in different directions at quasi-static and high strain rates, formability properties are determined using the model for the performance of virtual experiments: uniaxial tests are used to determine r-values and stress levels and biaxial tests are used for the calculation of yield surfaces and forming limit curves.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2011 ◽  
Vol 82 ◽  
pp. 124-129 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Stefano Bianchi

In this paper the first results of the mechanical characterization in tension of two high strength alloys in a wide range of strain rates are presented. Different experimental techniques were used for different strain rates: a universal machine, a Hydro-Pneumatic Machine and a JRC-Split Hopkinson Tensile Bar. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. An increase of the stress at a given strain increasing the strain-rate from 10-3 to 103 s-1, a moderate strain-rate sensitivity of the uniform and fracture strain, a poor reduction of the cross-sectional area at fracture with increasing the strain-rate were shown. Based on these experimental results the parameters required by the Johnson-Cook constitutive law were determined.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000480-000487
Author(s):  
Luke A. Wentlent ◽  
James Wilcox ◽  
Xuanyi Ding

Abstract As the electronics industry continues to evolve a concerted effort has developed to implement lower melting point solders. The ability to minimize the thermal exposure that an assembly is subjected to affords significant benefits with respect to both the reliability and the materials that can be used. One of the most popular low melt solder alloys currently being investigated by the industry is the Bi-Sn eutectic system, which has a melting point of 139°C. The BiSn system itself is not particularly novel as it was posited as a SAC alternative during the initial shift from Pb based solders. While a body of knowledge currently exists regarding this system, and the near eutectic variant BiSnAg, there are still concerns regarding its ductility, especially as a function of thermal exposure and strain rate. Bismuth is widely acknowledged as a brittle element and its presence in such quantities raises concerns of not just Cu6Sn5 embrittlement but also solder fragility in high strain rate types of environments. A challenge with regards to near term implementation is that most packages are not available with BiSn solder bumps. Therefore, it will be necessary to use components already balled with SAC 305 solder. This means that the resulting solder interconnect, reflowed below conventional SAC reflow temperatures, will form a type of mixed hybrid microstructure. This non-equilibrium microstructure will be composed of two regions, one Bi-rich region which is well past saturation and a second region which is Bi-deficient. It is of specific industrial interest then to not just investigate the BiSn solder system but also within the context of a realistic mixed interconnect. Recent work by several researchers has shown that this hybrid microstructure is unstable and quite active with respect to the movement and localized concentration of the Bismuth. The degree of mixing of these two regions has been shown to be highly dependent upon reflow temperature and the paste to ball volume ratio. Mixed SAC-BiSn solder joints were formed by placing SAC 305 spheres on BiSn paste deposits for a paste to ball volume ratio of .18. These samples were then reflowed at either 175°C or 200°C. SAC 305 control samples were also made using a conventional Pb-free reflow profile with a peak temperature of 247°C. A 22 mil Cu-OSP pad on a 1.0 mm thick FR4 substrate was used for all samples. A selection of the solder joints were then isothermally aged at 90°C for 200 hours. Using a joint level micromechanical tester, ball shear tests were conducted at a range of strain rates for samples in the as-reflowed and aged state. Using this information, the strain rate sensitivity of the interconnects was mapped and correlated with the observed failure modes. Investigations into the fracture mechanisms were conducted by examining the shear fracture surface with optical and scanning electron microscopy. Additionally, the evolution of the microstructure was characterized. Results showed a clear transition from ductile solder failure to a brittle separation failure at the higher strain rates.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


2019 ◽  
Vol 298 ◽  
pp. 43-51
Author(s):  
Jia Yong Si ◽  
Song Hao Liu ◽  
Long Chen

This research investigated the effect of hot extrusion on the flow behaviour of nickel-based superalloy FGH4096 by hot compression experiments in the temperature range from 1020 to 1110 °C and strain rates ranging from 0.1 to 0.001 s-1. The influence of the hot extrusion on the initial microstructures, work hardening rate, strain rate sensitivity, and activation energy of deformation were discussed. The results show that the extruded microstructure is constituted by the fine dynamic recrystallisation of grains. The true strain-true stress curves show that the as-HIPed and as-HEXed FGH4096 superalloy present double flow stress peaks and discontinuous flow softening. The as-HEXed FGH4096 is easily dynamically softened at high temperatures and high strain rates compared with as-HIPed microstructures. As for the work hardening rate, the as-HEXed FGH4096 exhibits higher θ values than that of as-HIPed. It is beneficial to the homogenous deformation and grain refinement during subsequent turbine disk forging. Comparing to as-HIPed FGH4096, the highest strain rate sensitivity value of as-HEXed is 0.306 at 1110 °C. The isothermal superplastic forging of a P/M turbine disk may be carried out at this temperature. The deformation activation energy value of the as-HIPed FGH4096 is lower which means that dislocation sliding and climbing can be easily initiated in the as-HIPed alloy.


Sign in / Sign up

Export Citation Format

Share Document