scholarly journals Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme

Author(s):  
Gary E. Gibson ◽  
Hui Zhang ◽  
Hui Xu ◽  
Larry C.H. Park ◽  
Thomas M. Jeitner
2017 ◽  
Vol 95 (5) ◽  
pp. 556-562 ◽  
Author(s):  
Natalia Pavón ◽  
Mabel Buelna-Chontal ◽  
Francisco Correa ◽  
Belem Yoval-Sánchez ◽  
Javier Belmont ◽  
...  

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


2014 ◽  
Vol 306 (1) ◽  
pp. G37-G47 ◽  
Author(s):  
Xiang Ding ◽  
Juliane I. Beier ◽  
Keegan J. Baldauf ◽  
Jenny D. Jokinen ◽  
Hai Zhong ◽  
...  

It is known that chronic ethanol significantly impairs liver regeneration. However, the effect of acute ethanol exposure on liver regeneration remains largely unknown. To address this question, C57Bl6/J mice were exposed to acute ethanol (6 g/kg intragastrically) for 3 days, and partial hepatectomy (PHx) was performed 24 h after the last dose. Surprisingly, acute ethanol preexposure promoted liver regeneration. This effect of ethanol did not correlate with changes in expression of cell cycle regulatory genes (e.g., cyclin D1, p21, and p27) but did correlate with protection against the effect of PHx on indices of impaired lipid and carbohydrate metabolism. Ethanol preexposure protected against inhibition of the oxidant-sensitive mitochondrial enzyme, aconitase. The activity of aldehyde dehydrogenase 2 (ALDH2) was significantly increased by ethanol preexposure. The effect of ethanol was blocked by inhibiting (Daidzin) and was mimicked by activating (Alda-1) ALDH2. Lipid peroxides are also substrates for ALDH2; indeed, alcohol preexposure blunted the increase in lipid peroxidation (4OH-nonenal adducts) caused by PHx. Taken together, these data suggest that acute preoperative ethanol exposure “preconditions” the liver to respond more rapidly to regenerate after PHx by activating mitochondrial ALDH2, which prevents oxidative stress in this compartment.


1993 ◽  
Vol 295 (2) ◽  
pp. 525-529 ◽  
Author(s):  
J G Vostal ◽  
J C Fratantoni

Cytochrome P-450 has been suggested as a mediator of the signal between depleted platelet calcium stores and an increase in plasma membrane permeability to calcium which follows depletion of the stores. This hypothesis is based on the observations that inhibitors of cytochrome P-450, such as the imidazole antifungal agents, also inhibit influx of a calcium surrogate (manganese) into calcium-depleted platelets. We tested the effects of econazole and of a cytochrome P-450 inhibitor, carbon monoxide (CO), on thapsigargin (TG)-induced platelet 45Ca2+ influx. TG specifically depletes internal calcium stores and activates store-regulated calcium influx. Econazole blocked 45Ca2+ influx when it was added before TG (IC50 11 microM). Econazole at a concentration (20 microM) that inhibited 83% of TG-induced calcium influx was not inhibitory to TG-induced calcium efflux from 45Ca(2+)-loaded platelets, and did not affect calcium fluxes in resting platelets. This econazole concentration was also inhibitory to calcium influx even when it was added after the stores had been calcium-depleted by EGTA and TG for 15 min and the signal to increase calcium influx had already been generated. Inhibition of cytochrome P-450 with CO bubbled through platelet suspensions did not change calcium influx in resting cells and potentiated TG-induced calcium influx (160% of control calcium accumulation at 20 min). This effect appeared to be concentration-dependent, such that a 5 min exposure to CO produced a greater influx potentiation than a 3 min exposure. These observations indicate that (1) cytochrome P-450 does not mediate store-regulated calcium influx, and (2) econazole probably inhibits store-regulated calcium influx by an alternative mechanism, such as interaction with plasma membrane calcium channels.


1996 ◽  
Vol 10 (2) ◽  
pp. 302-308 ◽  
Author(s):  
Aldebaran M. Hofer ◽  
Silvana Curci ◽  
Terry E. Machen ◽  
Irene Schulz

2002 ◽  
Author(s):  
Mark E. Boston ◽  
G. C. Frech ◽  
Enrique Chacon-Cruz ◽  
E. S. Buescher ◽  
David G. Oelberg

Sign in / Sign up

Export Citation Format

Share Document