scholarly journals cDNA sequence and expression pattern of the Drosophila melanogaster PAPS synthetase gene: a new salivary gland marker

1997 ◽  
Vol 68 (1-2) ◽  
pp. 179-186 ◽  
Author(s):  
Denis Jullien ◽  
Michèle Crozatier ◽  
Emmanuel Käs
Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


1974 ◽  
Vol 24 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. K. Lim ◽  
L. A. Snyder

SUMMARYSalivary-gland chromosomes of 54 methyl methanesulphonate- and 50 triethylene melamine-induced X-chromosome recessive lethals in Drosophila melanogaster were analysed. Two of the lethals induced by the mono-functional agent and 11 of those induced by the polyfunctional agent were found to be associated with detectable aberrations. A complementation analysis was also done on 82 ethyl methanesulphonate- and 34 triethylene melamine-induced recessive lethals in the zeste-white region of the X chromosome. The EMS-induced lethals were found to represent lesions affecting only single cistrons. Each of the 14 cistrons in the region known to mutate to a lethal state was represented by mutant alleles, but in widely different frequencies. Seven of the TEM-induced lethals were associated with deletions, only one of which had both breakpoints within the mapped region. Twenty-six of the 27 mutations in which only single cistrons were affected were mapped to 7 of the 14 known loci. One TEM- and two EMS-induced mutations were alleles representing a previously undetected locus in the zeste-white region.


1987 ◽  
Vol 7 (11) ◽  
pp. 4118-4121
Author(s):  
D A Talmage ◽  
M Blumenfeld

Phosphorylation of histone H1 is developmentally regulated in Drosophila spp. It cannot be detected in preblastoderm embryos or polytene salivary gland cells, but in cellular blastoderm, postblastoderm embryo, and amitotic adult head nuclei, it occurs with a frequency of roughly 4 x 10(5) molecules per nucleus. We used pulse-labeling to study the relationship between H1 synthesis and modification in cultured cells. These results reveal that the H1-associated phosphate is stable and suggest that Drosophila H1 is synthesized, translocated to the nucleus, associated with chromatin, and then phosphorylated. Partial tryptic digestion of Drosophila H1 revealed that the phosphorylation site is located within the globular, central domain of the protein. Thus, the developmentally regulated phosphorylation of Drosophila H1 presents two contrasts with previously studied H1 phosphorylation. It is not correlated with DNA replication, and it is located in the central domain of the protein.


2021 ◽  
Author(s):  
Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M. Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

AbstractThe spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns inDrosophilaare formed by the deposition of different pigments synthesized in the developing epidermis and the role ofcis-regulatory elements (CREs) of melanin biosynthesis pathway-related genes is well-characterized. These CREs typically exhibit modular arrangement in the regulatory region of the gene with each enhancer regulating a specific spatiotemporal expression of the gene. However, recent studies have suggested that multiple enhancers of a number of developmental genes as well as those ofyellow(involved in dark pigment synthesis) exhibit redundant activities. Here we report the redundant enhancer activities in thecis-regulatory region of another gene in the melanin biosynthesis pathway,ebony, in the developing epidermis ofDrosophila melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the endogenous primary epidermis enhancer (priEE) by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of amCherry-taggedebonyallele was examined in the thoracic and abdominal segments. The expression level ofebonyin the priEE-deleted strains was similar to that of the control strain, indicating the presence of redundant enhancer activities that drive the broad expression ofebonyin the developing epidermis. Additionally, the priEE fragment contained a silencer that suppressesebonyexpression in the dorsal midline of the abdominal tergites, which is necessary for the development of the subgenusSophophora-specific dark pigmentation patterns along the midline. The endogenous expression pattern ofebonyin the priEE-deleted strains and the reporter assay examining the autonomous activity of the priEE fragment indicated that the silencer is involved in repressing the activities of both proximal and distant enhancers. These results suggest that multiple silencers are dispensable in the regulatory system of a relatively stable taxonomic character. The prevalence of other redundant enhancers and silencers in the genome can be investigated using a similar approach.Author summaryGenes are expressed at the right timing and place to give rise to diverse phenotypes. The spatiotemporal regulation is usually achieved through the coordinated activities of transcription-activating and transcription-repressing proteins that bind to the DNA sequences called enhancers and silencers, respectively, located near the target gene. Most studies identified the locations of enhancers by examining the ability of the sequence fragments to regulate the expression of fused reporters. Various short enhancers have been identified using this approach. This study employed an alternative approach in which the previously identified enhancer that regulates expression ofebony(a gene involved in body color formation) was deleted in a fruitfly,Drosophila melanogaster, using the genome-editing technique. The knockout of this enhancer did not affect the transcription level of the gene to a large extent. This indicated the presence of transcription-activating elements with redundant functions outside the deleted enhancer. Additionally, the transcription ofebonyat the midline of the abdomen, which is repressed in the normal flies, were derepressed in the enhancer-deleted flies, which indicated that the deleted enhancer fragment contained a silencer that negatively regulates multiple enhancer activities in a spatially restricted manner.


1988 ◽  
Vol 8 (5) ◽  
pp. 1877-1886
Author(s):  
B M Benton ◽  
S Berrios ◽  
P A Fisher

A 75-kilodalton polypeptide has been identified which copurifies with karyoskeletal protein-enriched fractions prepared from Drosophila melanogaster embryos. Results of indirect immunofluorescence experiments suggest that this protein, here designated p75, is primarily associated with puffed regions of larval salivary gland polytene chromosomes. In nonpolytenized Schneider 2 tissue culture cells, p75 appeared to be localized throughout the nuclear interior during interphase. In mitotic cells, p75 was redistributed diffusely. A possible role for karyoskeletal elements in transcriptional regulation is discussed.


1974 ◽  
Vol 62 (1) ◽  
pp. 132-144 ◽  
Author(s):  
Wu-Nan Wen ◽  
Pedro E. León ◽  
Donald R. Hague

Ribosomal RNAs (28 + 18S and 5S) and 4S RNA extracted from the chironomid Glyptotendipes barbipes were iodinated in vitro with 125I and hybridized to the salivary gland chromosomes of G. barbipes and Drosophila melanogaster. Iodinated 18 + 28 S RNA labeled three puffed sites with associated nucleoli on chromosomes IR, IIL, and IIIL of G. barbipes and the nucleolar organizer of Drosophila. Labeled 5S RNA hybridized to three sites on chromosome IIIR, two sites on chromosome IIR and one site in a Balbiani ring on chromosome IV of Glyptotendipes. Most of the label produced by this RNA was localized seven bands away from the centromere on the right arm of chromosome III, and we consider this to be the main site complementary to 5S RNA in the chironomid. This same RNA preparation specifically labeled the 56 EF region of chromosome IIR of Drosophila which has been shown previously to be the only site labeled when hybridized with homologous 5S RNA. Hybridization of G. barbipes chromosomes with iodinated 4S RNA produced no clearly localized labeled sites over the exposure periods studied.


Sign in / Sign up

Export Citation Format

Share Document