scholarly journals A silencer repressing redundant enhancer activities revealed by deleting endogenouscis-regulatory element ofebonyinDrosophila melanogaster

2021 ◽  
Author(s):  
Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M. Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

AbstractThe spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns inDrosophilaare formed by the deposition of different pigments synthesized in the developing epidermis and the role ofcis-regulatory elements (CREs) of melanin biosynthesis pathway-related genes is well-characterized. These CREs typically exhibit modular arrangement in the regulatory region of the gene with each enhancer regulating a specific spatiotemporal expression of the gene. However, recent studies have suggested that multiple enhancers of a number of developmental genes as well as those ofyellow(involved in dark pigment synthesis) exhibit redundant activities. Here we report the redundant enhancer activities in thecis-regulatory region of another gene in the melanin biosynthesis pathway,ebony, in the developing epidermis ofDrosophila melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the endogenous primary epidermis enhancer (priEE) by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of amCherry-taggedebonyallele was examined in the thoracic and abdominal segments. The expression level ofebonyin the priEE-deleted strains was similar to that of the control strain, indicating the presence of redundant enhancer activities that drive the broad expression ofebonyin the developing epidermis. Additionally, the priEE fragment contained a silencer that suppressesebonyexpression in the dorsal midline of the abdominal tergites, which is necessary for the development of the subgenusSophophora-specific dark pigmentation patterns along the midline. The endogenous expression pattern ofebonyin the priEE-deleted strains and the reporter assay examining the autonomous activity of the priEE fragment indicated that the silencer is involved in repressing the activities of both proximal and distant enhancers. These results suggest that multiple silencers are dispensable in the regulatory system of a relatively stable taxonomic character. The prevalence of other redundant enhancers and silencers in the genome can be investigated using a similar approach.Author summaryGenes are expressed at the right timing and place to give rise to diverse phenotypes. The spatiotemporal regulation is usually achieved through the coordinated activities of transcription-activating and transcription-repressing proteins that bind to the DNA sequences called enhancers and silencers, respectively, located near the target gene. Most studies identified the locations of enhancers by examining the ability of the sequence fragments to regulate the expression of fused reporters. Various short enhancers have been identified using this approach. This study employed an alternative approach in which the previously identified enhancer that regulates expression ofebony(a gene involved in body color formation) was deleted in a fruitfly,Drosophila melanogaster, using the genome-editing technique. The knockout of this enhancer did not affect the transcription level of the gene to a large extent. This indicated the presence of transcription-activating elements with redundant functions outside the deleted enhancer. Additionally, the transcription ofebonyat the midline of the abdomen, which is repressed in the normal flies, were derepressed in the enhancer-deleted flies, which indicated that the deleted enhancer fragment contained a silencer that negatively regulates multiple enhancer activities in a spatially restricted manner.

Author(s):  
Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

Abstract The spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns in Drosophila are determined by pigments biosynthesized in the developing epidermis and the cis-regulatory elements (CREs) of the genes involved in this process are well-characterized. Here we report that the known primary epidermal enhancer (priEE) is dispensable for the transcriptional activation of ebony (involved in light-colored pigment synthesis) in the developing epidermis of D. melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the priEE by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of a mCherry-fused ebony allele was examined in the abdomen. The expression levels of the mCherry-fused ebony in the priEE-deleted strains were slightly higher than that of the control strain, indicating that the sequences outside the priEE have an ability to drive an expression of this gene in the epidermis. Interestingly, the priEE deletion resulted in a derepression of this gene in the dorsal midline of the abdominal tergites, where dark pigmentation is present in the wild-type individuals. This indicated that the priEE fragment contains a silencer. Furthermore, the endogenous expression pattern of ebony in the two additional strains with partially deleted priEE revealed that the silencer resides within a 351-bp fragment in the 5' portion of the priEE. These results demonstrated that deletion assays combined with reporter assays are highly effective in detecting the presence of positively and negatively regulating sequences within and outside the focal CREs.


Author(s):  
Andika Gunadi ◽  
◽  
Ning Zhang ◽  
John J. Finer ◽  
◽  
...  

Although most genome editing efforts focus on modifications to gene coding regions, this chapter emphasizes genome editing of the upstream regulatory regions. Thoughtful editing of the promoter region will ultimately lead to improved plants, modified for more precise control of the intensity and specificity of native gene expression. In this chapter, we present an overview of the promoter or upstream regulatory region of a gene, and describe how this sequence is defined and studied. We then describe how the composition and arrangements of cis-regulatory elements within the promoter and the leading intron associated with the promoter region have been studied using classical transgenic approaches to reveal what regulatory components might be suitable for genome editing approaches. Finally, we offer some suggestions for pursuit of promoter editing and gene expression modulation, which will eventually lead to modified plants with an altered regulation of native gene expression.


Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1533-1541 ◽  
Author(s):  
Ernesto Bockamp ◽  
Cecilia Antunes ◽  
Marko Maringer ◽  
Rosario Heck ◽  
Katrin Presser ◽  
...  

The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.


2019 ◽  
Vol 23 (2) ◽  
pp. 199-202
Author(s):  
O. V. Andreyenkov ◽  
E. I. Volkova ◽  
N. G. Andreyenkova ◽  
S. A. Demakov

The Notch gene plays a key role in the development of organs and tissues of neuroectodermic origin, including the nervous system. In eukaryotic organisms, the Notch pathway is involved in cell fate determination. The Notch gene was first discovered in Drosophila melanogaster. In mammals, the family of Notch receptors includes four homologues. In humans, mutations in the Notch gene cause several hereditary diseases and carcinogenesis. Studies of the regulatory zone of the Notch gene in D. melanogaster have been conducted for several decades. We review their results and methods. The regulatory zone of the Notch gene is in the region of open chromatin state that corresponds to the 3C6/3C7 interband on the cytological map of polytene chromosomes of D. melanogaster salivary glands. The development of new methods for directed genome editing made it possible to create a system for introducing directed changes into the regulatory zone of the gene. Using the CRISPR/Cas9 system, we obtained a directed 4-kilobase deletion including the 5’-regulatory zone, promoter, and the first exon of the Notch gene and introduced the attP site into the first intron of the Notch gene. This approach enabled targeted changes of the sequence of the regulatory and promoter regions of the gene. Thus, it provided a new powerful tool for studies of Notch gene regulation and the organization of the open chromatin state.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 763-771
Author(s):  
N L Shen ◽  
E C Hotaling ◽  
G Subrahmanyam ◽  
P F Martin ◽  
W Sofer

Abstract The effects of a series of eight, 50 base pair internal deletions in the 5' region upstream of the proximal transcription start site of the Adh gene of Drosophila melanogaster were examined in a quantitative assay. Mixtures of two plasmids, one bearing a deleted gene, the other with an intact reference gene, were injected into alcohol dehydrogenase-negative embryos. Third instar larvae of the injected generation were assayed for relative alcohol dehydrogenase enzyme activity. Quantitative analysis of the eight deletions indicated that two regions were required for any detectable enzyme activity and one region was required for appropriate tissue specificity. The remaining five deletions significantly decreased, but did not eliminate activity. When the deleted genes were placed on a plasmid with an intact reference gene, activities of all but one deletion were restored to levels equivalent to that of the intact reference gene (regardless of orientation). This restoration of activity did not occur when the regulatory region of the intact gene was replaced with the Hsp70 heat shock promoter nor when the 50-base pair deletion encompassed the region that includes the TATA sequence. The fact that seven of the eight deleted genes express activity in the presence of a reference gene on the same plasmid suggests that the deleted gene is controlled by regulatory elements in the reference gene. Further, these regulatory elements exhibit no preference for their own, more proximate, promoter.


Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 753-762
Author(s):  
Günther E Roth ◽  
Sigrid Wattler ◽  
Hartmut Bornschein ◽  
Michael Lehmann ◽  
Günter Korge

Abstract The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single λ clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 893-906 ◽  
Author(s):  
Elizabeth Gustavson ◽  
Andrew S Goldsborough ◽  
Zehra Ali ◽  
Thomas B Kornberg

Abstract We isolated and characterized numerous engrailed and invected alleles. Among the deficiencies we isolated, a mutant lacking invected sequences was viable and phenotypically normal, a mutant lacking engrailed was an embryo lethal and had slight segmentation defects, and a mutant lacking both engrailed and invected was most severely affected. In seven engrailed alleles, mutations caused translation to terminate prematurely in the central or C-terminal portion of the coding sequence, resulting in embryonic lethality and segmentation defects. Both engrailed and invected expression declined prematurely in these mutant embryos. In wild-type embryos, engrailed and invected are juxtaposed and are expressed in essentially identical patterns. A breakpoint mutant that separates the mgrailed and invected transcription units parceled different aspects of the expression pattern to engrailed or invected. We also found that both genes cause similar defects when expressed ectopically and that the protein products of both genes act to repress transcription in cultured cells. We propose that the varied phenotypes of the engrailed alleles can be explained by the differential effects these mutants have on the combination of engrailed and invected activities, that engrailed and invected share a regulatory region, and that they encode redundant functions.


1982 ◽  
Vol 257 (15) ◽  
pp. 8738-8744
Author(s):  
F G Cánovas ◽  
F García-Carmona ◽  
J V Sánchez ◽  
J L Pastor ◽  
J A Teruel

Sign in / Sign up

Export Citation Format

Share Document