floral homeotic
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 11)

H-INDEX

51
(FIVE YEARS 1)

2021 ◽  
Vol 61 ◽  
pp. 102009
Author(s):  
Margaret Anne Pelayo ◽  
Nobutoshi Yamaguchi ◽  
Toshiro Ito

2021 ◽  
Author(s):  
Fenfen Li ◽  
Yanhua Jia ◽  
Xinyu Chen ◽  
Shengen Zhou ◽  
Qiaoli Xie ◽  
...  

Abstract MADS-domain transcription factors have been clarified as key regulators involved in proper flower and fruit development in angiosperms. Bs genes, as members of the MADS-box subfamily, have been suggested to play an important role during the evolution of the reproductive organs in seed plants. Our knowledge about their effects on reproductive development in fruit crops like tomato (Solanum lycopersicum), however, is still unclear. Here, we found that the overexpression of SlMBP22 (SlMBP22-OE) resulted in considerable alterations regarding floral morphology, and affected the expression levels of several floral homeotic genes. Further analysis by yeast-two-hybrid assays demonstrated that SlMBP22 could form dimers with class A protein MACROCALYX (MC) and with SEPALLATA (SEP) floral homeotic proteins TM5 and TM29, respectively. In addition, pollen viability and cross-fertilization assays suggested that the defect in female reproductive development was responsible for infertility phenotype observed in the strong overexpression transgenic plants. The mild overexpression transgenic fruits were reduced in size, as a result of reduced cell expansion, rather than impaired cell division. Additionally, overexpression of SlMBP22 in tomato not only affected proanthocyanidin (PA) accumulation but also altered seed dormancy. Taken together, these findings may provide new insights into the knowledge of Bs MADS-box genes in flower and fruit development in tomato.


2020 ◽  
Author(s):  
Beth A. Krizek ◽  
Alexis T. Bantle ◽  
Jorman M. Heflin ◽  
Han Han ◽  
Nowlan H. Freese ◽  
...  

AbstractArabidopsis flower primordia give rise to floral organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) play critical and partially overlapping roles during floral organogenesis. They are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular means by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT and AIL6 binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include the floral homeotic genes APETALA3 (AP3) and AGAMOUS (AG) and four growth regulatory genes: BIG BROTHER (BB), ROTUNDIFOLIA3 (ROT3), ANGUSTIFOLIA3/GRF INTERACTING FACTOR (AN3/GIF1), and XYLOGLUCAN ENDOTRANSGLUCOLSYLASE/HYDROLASE9 (XTH9).One Sentence SummaryThe transcription factors ANT and AIL6 directly regulate genes involved in different aspects of flower development including genes that specify floral organ identity and those that regulate growth.


Author(s):  
Yun Hu ◽  
Li Wang ◽  
Ru Jia ◽  
Wanqi Liang ◽  
Xuelian Zhang ◽  
...  

Abstract Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, regulate floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles of OsMADS32 in defining stamen, pistil and ovule development through physical and genetic interactions with OsMADS1, OsMADS58 and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3 and OsMADS58 respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants.


2019 ◽  
Author(s):  
Marc-Benjamin Aurin ◽  
Michael Haupt ◽  
Matthias Görlach ◽  
Florian Rümpler ◽  
Günter Theißen

SummaryPhytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS-WITCHES’ BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves physical binding to the keratin-like K-domain of MIKC-type proteins, and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here we report, based on biophysical and molecular biological analyses, that SAP54 folds into α-helical structures. We also show that the insertion of helix-breaking mutations disrupts correct folding of SAP54, which interferes with the ability of SAP54 to bind to its target proteins and to cause disease phenotypes in vivo. Surprisingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with literature data this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled-coils, possibly also involving other partners such as RAD23 proteins. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and thus may ultimately help to develop treatments against some devastating plant diseases.SIGNIFICANCE STATEMENTPhytoplasmas are bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins such as SAP54, which leads to the degradation of some floral homeotic proteins. Our study clarifies the structural requirements of SAP54 function and illuminates the molecular mode of interaction and thus may ultimately help to develop treatments against some devastating plant diseases.


2019 ◽  
Vol 70 (21) ◽  
pp. 6245-6259
Author(s):  
Janardan Khadka ◽  
Narendra Singh Yadav ◽  
Micha Guy ◽  
Gideon Grafi ◽  
Avi Golan-Goldhirsh

Sex-determination in Mercurialis annua is not related to chromatin conformation or DNA methylation of floral homeotic genes but might be regulated upstream of these genes by one or more unknown gender-specific factors that affect hormonal homeostasis.


2019 ◽  
Vol 46 (6) ◽  
pp. 5713-5722
Author(s):  
Jagadale Mahesh Vasantrao ◽  
Indrani K. Baruah ◽  
Debashis Panda ◽  
Mamta Bhattacharjee ◽  
Sumita Acharjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document